Syntheses and Properties of Methano-Bridged Dichlorodidehydro-[16]-, -[20]and -[24]-annulenediones

Hiroyuki Higuchi, ${ }^{a}$ Kaori Asano, ${ }^{a}$ Jūro Ojima, ${ }^{*, a}$ Koji Yamamoto, ${ }^{b}$ Toshikatsu Yoshida, ${ }^{b}$ Tomohiro Adachi ${ }^{b}$ and Gaku Yamamoto *, \boldsymbol{c}
${ }^{a}$ Department of Chemistry, Faculty of Science, Toyama University, Gofuku, Toyama 930, Japan
${ }^{\text {b }}$ Department of Chemistry, Faculty of Integrated Arts and Sciences, University of Osaka Prefecture, Sakai, Osaka 593, Japan
${ }^{c}$ Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Bisethynylation of the vinylogous dialdehydes of cyclohepta-1,3,5-triene-1,6-dicarbaldehyde with ethynylmagnesium bromide followed by oxidation of the resulted diols afforded the diacetylenic diketones. Intramolecular oxidative coupling of these diketones under the Glaser conditions unexpectedly afforded three annulenediones with a 1,4 -dichlorobutatriene moiety. The unusual structures were confirmed by X-ray crystallographic analysis of 10,13-dichloro-11,12-didehydro-1,6-methano[16]annulene-9,14-dione. These annulenediones exhibited strong diatropicity in $\mathrm{D}_{2} \mathrm{SO}_{4}$ due to the dicationic 14π-, 18π - and 22π-electron species and their diatropicities were shown to increase with increasing ring size.

Although several annulenediones are known, those with a ring larger than a 20 -membered one are few. ${ }^{1}$ In our previous paper, we reported successful syntheses of a series of methano-bridged tetradehydroannulenediones 1 and showed that among them only the [24]annulenedione ($1 ; m=n=1$) exhibited diatropicity in $\mathrm{D}_{2} \mathrm{SO}_{4}$, suggesting the formation of the corresponding dicationic species. ${ }^{2}$ In order to examine the tropic nature of a series of annulenediones in which the number of double bonds is increased systematically we planned to prepare a series of another type of tetradehydroannulenedione, compounds 2 , since it was expected that both a methano-bridge and a diacetylenic linkage would contribute to keeping the annulenedione perimeter rigid. ${ }^{3-5}$ However, during our initial attempt to prepare the tetradehydromethano[20]annulenedione ($2 ; m=n=1$), we encountered the unexpected formation of a didehydromethano[20]annulenedione 4 containing a 1,4 -dichlorobutatriene moiety, and of a strongly diatropic dicationic species 4A therefrom in $\mathrm{D}_{2} \mathrm{SO}_{4}$.

These interesting findings prompted us to attempt the preparation of higher and lower homologues of compound 4 and to study their tropicities systematically while keeping possible changes in stereochemistry to a minimum. In practice, we could obtain only the formally symmetrical, (4n)membered didehydroannulenediones 3-5, and not the unsymmetrical $(4 n+2)$-membered ones. \dagger The annulenediones 3-5 prepared in this study showed diatropicity for the $[4 n+2]$ π-electron system arising from polarization of two carbonyl groups. It should be pointed out that the didehydromethano[24]annulenedione 5 is the largest membered annulenedione to show the ring current effect, and the species $\mathbf{5 A}$ is the most highly diatropic, dicationic species formed from the annulenediones so far obtained. ${ }^{1,6}$ Furthermore, it was found that the diatropicity of the dicationic species 3A-5A (see later, Fig. 3) increased with increasing ring size. This is unprecedented and will be discussed in detail.

[^0]

Results and Discussion

Synthesis.-Our initial attempt to obtain the tetradehydromethano[20]annulenedione 2 ($m=n=1$) began with the dialdehyde 10 which was prepared from cyclohepta-1,3,5-triene-1,6-dicarbaldehyde 6^{7} by an interative sequence of Wittig condensations with an 8.0 molar equiv. excess of [(1,3-dioxolan-2-yl)methyl]triphenylphosphonium bromide, followed by immediate hydrolysis of the resulting bisacetal, according to the previously reported method. ${ }^{3-5}$ In the case of the dialdehyde 10 , the product was a mixture of the all- E isomer 10a and the mono- Z isomer 10b, ${ }^{4}$ which had occasionally been observed in homologation of a lower homologue by Wittig condensation. ${ }^{5}$ Bisethynylation of a mixture of dialdehydes 10a and 10b with a large excess of ethynylmagnesium bromide in tetrahydrofuran (THF) ${ }^{8}$ afforded the corresponding diacetylenic diol 19 (see Scheme 1) which comprised the $(E, E),(E, Z)$-isomer 19a and the $(E, Z),(E, Z)$-isomer 19b. When

Scheme 1 Reagents and conditions: $\mathrm{i}, \mathrm{HC}=\mathrm{CMgBr}, \mathrm{THF}$; ii, $\mathrm{Ba}-$ $\left(\mathrm{MnO}_{4}\right)_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, $\mathrm{O}_{2}, \mathrm{CuCl}, \mathrm{NH}_{4} \mathrm{Cl}$, conc. HCl , aq. $\mathrm{EtOH}-$ benzene, $60^{\circ} \mathrm{C}$
we carried out the bisethynylation using the pure all- E dialdehyde 10a, the product was only the $(E, E),(E, Z)$-diol 19 a . Oxidation of the diol 19 a with $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}{ }^{9}$ in dichloromethane yielded the $(E, E),(E, Z)$-diketone 28a. However, similar oxidation of the diol 19b yielded a mixture of the $(E, E),(E, Z)$ diketone 28a and the $(E, E),(E, E)$-diketone $\mathbf{2 8 b}$. Thus, it was noted that all the olefin configurations in diol 19a were retained during oxidation to afford the diketone 28a, but that those in diol 19b were not, suggesting that compound 28a is more stable than its isomer 28b. Attempted oxidative couplings of the acyclic diacetylenic diol 19a or the diacetylenic diketone 28a under Eglinton's conditions ${ }^{10}$ using anhydrous copper(II) acetate in a mixture of pyridine and diethyl ether resulted in decomposition of the substrate (19a or 28a), and neither the desired cyclic diol nor the tetradehydro[20]annulenedione (2; $m=n=1$) could be obtained at all, probably owing to instability of these substrates in the basic medium, pyridine. We then attempted the coupling of compound 28 under acidic conditions.

An intramolecular oxidative coupling of the acyclic diketone 28a was attempted under Glaser conditions ${ }^{11}$ by bubbling oxygen through a mixture of the diacetylene 28a, copper(I) chloride and ammonium chloride in aq. ethanol-benzene with conc. hydrochloric acid at $60^{\circ} \mathrm{C}$. Chromatography of the product on silica gel afforded dark purple needles (10% yield) which decomposed at $156-161^{\circ} \mathrm{C}$ on attempted determination of the m.p. The product was identified as the dichlorodidehydro[20]annulenedione 4 containing a butatriene moiety and two chlorine atoms rather than the expected structure 2 ($m=$ $n=1$) from the following spectral data and the elemental
analysis. The molecular-ion peak in the mass spectrum appeared at $m / z 368$ with the isotope peaks expected for two chlorine atoms. The IR spectrum (KBr disc) showed a strong carbonyl absorption at $1655 \mathrm{~cm}^{-1}$ and a weak absorption ascribable to the butatriene moiety at $2040 \mathrm{~cm}^{-1}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3} ; 125 \mathrm{MHz}\right)$ the quaternary carbon signals ascribable to the terminal and central carbons of the butatriene moiety appeared at $\delta_{\mathrm{C}} 121.1$ and 158.8 , respectively. The coupling pattern of the olefinic protons in the ${ }^{1} \mathrm{H}$ NMR spectrum (see below) clearly pointed to the geometry shown by the formula 4. Thus, it was noted that the $Z-\mathrm{HC}=\mathrm{CH}$ moiety of compound 28a isomerized to E during the Glaser coupling to form compound 4 . The reason for this as well as the detailed mechanism of the formation of compound 4 is uncertain, but configurational isomerization of a double bond during the intramolecular oxidative couplings has been observed in the formation of the tetradehydromethano[30]annulenedione 1 ($m=3, n=2$), ${ }^{2}$ methanothia-[19]- and -[23]-annulene, ${ }^{5}$ tetradehydro[15]annulenone ${ }^{12}$ and tetradehydrotribenz[14]annulene. ${ }^{13}$ An inclination to formation of a less strained ring upon cyclization may be partly responsible. However, the diketone 28b with two $E-\mathrm{HC}=\mathrm{CH}$ moieties did not form compound 4 by the Glaser coupling under the same conditions as did the diketone 28a. As discussed in the next section, the [20]annulenedione 4 formed a highly delocalized dicationic species in $\mathrm{D}_{2} \mathrm{SO}_{4}$.

These findings made us give up our initial objective of preparing the tetradehydroannulenediones of type 2 and instead to try to obtain the analogues of compound 4 . Thus, a series of the acyclic precursors, the diacetylenic diketones 24-32 in which the number of double bonds is increased systematically, were prepared according to the reaction sequence illustrated in Scheme 1. As described above for the preparations of the diketones $\mathbf{2 8 a}$ and $\mathbf{2 8 b}$, the starting materials were the dialdehydes 6-14 and successive homologations of the dialdehyde 6^{7} to the vinylogous dialdehydes $7-14$ were carried out according to the previously reported method. ${ }^{3-5}$ When a geometrically isomeric mixture was formed in the preparation of the dialdehydes $\mathbf{7 - 1 4}$ as for the dialdehyde 10 , the Z-isomer was converted into the corresponding E-isomer by treatment with iodine. Bisethynylation of the all- E dialdehydes 7-14 ${ }^{3-5}$ with a large excess of ethynylmagnesium bromide in tetrahydrofuran (THF) ${ }^{8}$ afforded the corresponding diacetylenic diols $15-23$ in $36-64 \%$ yield. These diols $15-23$ were thermally unstable and sensitive to diffused light and air. Therefore, much effort was devoted to obtaining satisfactory spectral data and elemental analyses of these diols.
The diols 15-23 have two chiral carbon atoms and thus are capable of existing as two diastereoisomers. In the lowest homologue of the series, compound 15, two diastereoisomers, $R^{*} R^{*}$ (racemic) and $R S$ (meso), were separately isolated and the stereochemistry was unambiguously assigned: The $R^{*} R^{*}$ diastereoisomer gave the methylene proton signal as a singlet while the $R S$ isomer's was an AB-quartet because of the geometrical symmetry. For the higher homologues 16-23 no effort was made to isolate the separate diastereoisomers and the characterizations were made for isomeric mixtures. In compounds 16, 18 and 20, two diastereoisomers existed in $\sim 5: 2,5: 1$ and $1: 1$ ratios, respectively, as revealed by the presence of two sets of methylene proton signals, usually ABquartets and for one isomer of 20 an apparent singlet. Compound 17 existed as a $\sim 1: 1$ mixture of $R^{*} R^{*}$ and $R S$ isomers, whose methylene signal appeared as a singlet and an AB-quartet, respectively. As the number of side-chain $\mathrm{CH}=\mathrm{CH}$ groups increased, the difference in chemical shifts between the isomers decreased. In compounds 18 and 20 , the difference between the isomers was observed only in the methylene proton signals. In compounds 21-23, no difference between the isomers

$15 a$

$15 b$

16

17

$19 a$

21

22

23

24

25

26

27

28a

28b

29

30
was detected at all and thus it is not clear whether these compounds exist as a single diastereoisomer or as a mixture of diastereoisomers.

In compounds 16-18, the side-chain $\mathrm{CH}=\mathrm{CH}$ groups were of E configuration as revealed by the $J_{\text {vic }}$-values of $\sim 15 \mathrm{~Hz}$. Compound 19 behaved unusually and one of the $\mathrm{CH}=\mathrm{CH}$ groups adjacent to the CHOH moieties had the Z configuration as mentioned above. In compounds 20-23, the $\mathrm{CH}=\mathrm{CH}$ groups adjacent to the CHOH moieties were concluded to be all in the E configuration. As for the other $\mathrm{CH}=\mathrm{CH}$ groups no definite assignment of configuration could be made because of overlap of the signals, and the E configuration was tentatively assigned.

31

32

The diols 15-23 were then converted into the diacetylenic diketones $24-32$ in $48-68 \%$ yield by oxidation with $\mathrm{Ba}-$ $\left(\mathrm{MnO}_{4}\right)_{2}{ }^{9}$ in dichloromethane. The ${ }^{1} \mathrm{H}$ NMR spectral and structural assignments of the diketones 24-32 were made on the basis of decoupling experiments. The olefin protons α to the carbonyl groups appeared at the highest field of the olefin region and those at the β positions gave their signals at the lowest field, and the other olefin protons appeared in between. The olefinic proton signals of all the diketones except for compound 31 were unambiguously analysed as given in the Experimental section, and the E-configuration was assigned to all the $\mathrm{CH}=\mathrm{CH}$ groups except for compound 28a. The diketones 24-32 were relatively stable compounds.
Attempts to cyclize these diketones 24-32 under Glaser conditions were made similarly as for the preparation of the [20]annulenedione 4. Glaser couplings of the formally symmetrical precursors 26 and 30 with the $\mathrm{CH}=\mathrm{CH}$ groups of the same number at positions 1 and 6 of the cycloheptatriene ring afforded the corresponding, (4n)-membered, [16]- 3 and [24]annulenedione 5, but those of the formally unsymmetrical precursors 25,* 27, 29 and 31 with the $\mathrm{CH}=\mathrm{CH}$ groups of different numbers did not produce the desired $(4 n+2)$ membered annulenediones. In the coupling of the diketone 29, Hay coupling using 1,4 -diaminobutane ${ }^{14}$ was also attempted, but no desired [22]annulenedione was detected. The desired products may have sterically unfavourable structures. The

[^1]

Fig. 1 An ORTEP drawing of compound 3
coupling of the lowest member 24 did not afford the corresponding annulenedione, presumably due to a sterically unfavourable structure. Also, attempted coupling of the highest member 32 did not afford the corresponding annulenedione and compound 32 was recovered unchanged. The low solubility of substrate $\mathbf{3 2}$ in the reaction solvents (benzene and ethanol) may have prohibited the formation of the desired product.

Dichlorodidehydromethano-[16] annulenedione 3, -[20]annulenedione 4 and -[24]annulenedione 5 , so obtained, formed thermally relatively stable, dark red, black-purple and dark green crystals, respectively.
X-Ray Structure Analysis of Compound 3.-The formation of the annulenedione structure with a 1,4-dichlorobutatriene moiety seemed quite unusual, and thus X-ray crystallographic analysis was performed for compound $\mathbf{3}$ in order to confirm this unique structure, because only compound 3 afforded single crystals suitable for X-ray analysis.

The perspective drawing of the molecular structure of 3 is shown in Fig. 1.

The structural data clearly show that the compound has the structure supported by the spectroscopic studies mentioned above. The molecule is significantly distorted from the expected C_{s} structure presumably because of the ring strain and/or the transannular repulsion. No unusual bond lengths or angles were found except for the C4-C5 and C8-C9 bond lengths [1.500(6) and 1.514(7) \AA, respectively] which are somewhat longer than the normal length of an $\mathrm{sp}^{2}-\mathrm{sp}^{2}$ single bond. The peripheral π-system is fairly planar, although the inter-ring dihedral angles of the $\mathrm{C} 9-\mathrm{C10}, \mathrm{C} 13-\mathrm{C} 14$ and $\mathrm{C} 15-\mathrm{C} 16$ bonds deviate from planarity by $\sim 30^{\circ}$. The butatriene moiety deviates only slightly from linearity.

The ${ }^{1} \mathrm{H}$ NMR Spectra of Compounds 3-5.-The ${ }^{1} \mathrm{H}$ NMR spectra of the dichlorodidehydroannulenediones 3-5 both in CDCl_{3} (Fig. 2) and in $\mathrm{D}_{2} \mathrm{SO}_{4}$ (Fig. 3), were easily analysed by means of the decoupling experiments and the data are listed in Table 1 together with those of the corresponding acyclic precursors 26, 28b and 30. The data of compound 28b rather than those of its isomer 28a were used as the more appropriate model for comparison with compound 4 , although compound 4 could not be obtained from dione 28b.
As can be seen from Table 1, the outer protons in compounds $3-5$ resonate at lower field than the corresponding protons in the acyclic model compounds $26,28 \mathrm{~b}$ and 30 , respectively, whereas the inner olefinic protons as well as the bridged methylene protons resonate at higher field. The chemical-shift differences $\Delta \delta^{\mathrm{AB}}$ between H^{A} and H^{B} protons in compound $\mathbf{3}$, and $\Delta \delta^{\mathrm{BC}}$ between H^{B} and H^{C} protons in compounds 4 and 5 as the representatives of the outer and inner olefinic protons, respectively, are also shown, which are regarded as an approximate measure of the magnitude of the induced ring current. The $\Delta \delta^{\mathrm{AB}}$ - and $\Delta \delta^{\mathrm{BC}}$-values are $1.2-1.7 \mathrm{ppm}$, and are therefore similar among compounds 3-5. The chemical shifts of the

4

Fig. $2500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of compounds 3 (a), $\mathbf{4}$ (b) and 5 (c) in CDCl_{3} at $26^{\circ} \mathrm{C}$
bridged methylene protons are also very similar among these compounds and their average positions are $\sim 0.5 \mathrm{ppm}$ upfield of those of the acyclic precursors 26, 28 and $\mathbf{3 0}$. These spectral data indicate that compounds $3-5$ are diatropic in CDCl_{3}, although diatropicity is expected of 14π-, 18π - and 22π-electron systems, respectively, arising from polarization of the two carbonyl groups.

Dissolution of compound 3-5 in $\mathrm{D}_{2} \mathrm{SO}_{4}$ afforded a dark green solution, a dark green-brown solution, and a dark violet solution, respectively, suggesting the formation of the corresponding dicationic species 3A-5A. In particular, the solution of dication 5A was very stable and remained unchanged for several months at $-10^{\circ} \mathrm{C}$, although the solution in CDCl_{3} was less stable and underwent considerable decomposition after several days at $-10^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ NMR spectral data of cations 3A-5A are also given in Table 1 and the spectra are shown in Fig. 3. In species 3A-5A the inner protons H^{A}, H^{C} and H^{E} as well as the bridged methylene protons appear at an extremely high field of $\delta-1$ to -6.5 , while the outer protons appear at a very low field of $\delta 9-12$, indicating the induction of very strong diamagnetic ring current due to the dicationic species 3A-5A to which the extensively delocalized 14π - 3B, 18π - 4 B and 22π electron structure 5B contribute to a great extent. In addition, $\Delta \delta^{\mathrm{AB}}$ or $\Delta \delta^{\mathrm{BC}}$ increases in the order 3A $(11.8 \mathrm{ppm})<4 \mathrm{~A}$ $(13.7 \mathrm{ppm})<\mathbf{5 A}(16.3 \mathrm{ppm})$ with increasing ring size. Furthermore, the resonance of the bridged methylene protons, which are located inside the macrocycles, move to higher field on going from dication $\mathbf{3 A}$ to $\mathbf{5 A}$, showing the increasing diamagnetic ring currents as the ring size increases.
These findings are remarkable in two respects. (i) As theoretically predicted, ${ }^{15}$ such a large diatropicity as observed
in species 5A for a 22π-electron system has never been observed, not even in diprotonated annulenediones $\mathbf{1}^{2}$ and protonated annulenones, ${ }^{16}$ but also in neutral annulenes, such as the carbocyclic 'acetylene-cumulene' tetradehydroannulenes $\mathbf{3 3}{ }^{17}$ and the tetradehydromethanoannulenes 34. ${ }^{3.4}$
(ii) The diatropicity increases with increasing ring size. This observation is also unprecedented. It has so far been recognized that the diatropicity decreases as the ring size increases in peripherally conjugated systems such as compounds $\mathbf{3 3}{ }^{17}$ and 34. ${ }^{3.4 .18}$

Haddon pointed out that the ring-current effect increases with increasing ring size if the macrocycles have no bond alternation and are highly delocalized. ${ }^{19}$ As can be seen from Table 1, the species $\mathbf{3 A}-5 \mathrm{~A}$ may be the cases predicted by Haddon, since the bond alternation in dications $\mathbf{3 A}-5 \mathrm{~A}$ is considerably less as compared with that of compounds 3-5, judging from the vicinal coupling constants (J) of the olefinic protons.

Thus, the fact that the diatropicities increase with increasing ring size in dications 3A-5A may not be so surprising if we accept Haddon's prediction.
${ }^{13} \mathrm{C}$ NMR Spectra of Compounds 3-5.-The ${ }^{13} \mathrm{C}$ NMR spectral data of compounds 3-5 in CDCl_{3} and in $\mathrm{D}_{2} \mathrm{SO}_{4}$ are compiled in Table 2. For compound 3 in CDCl_{3}, carbons carrying hydrogen atom(s) were unambiguously assigned by CH-COSY spectra. Among the quaternary carbon signals, the signal at $\delta 129.7$ was assigned to the bridgehead carbon because it appeared as a complex multiplet due to ${ }^{2} J_{\mathrm{CH}}$ and higher couplings in a ${ }^{1} \mathrm{H}$-non-decoupled spectrum. The signals at $\delta 121.3$ and 160.3 were assigned to the sp^{2} - and sp-hybridized carbons,

Fig. $3500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of species $\mathbf{3 A}(\mathrm{a}), 4 \mathrm{~A}(\mathrm{~b})$ and 5 A (c) in $\mathrm{D}_{2} \mathrm{SO}_{4}$ at $26^{\circ} \mathrm{C}$
respectively, of the butatriene moiety, in accordance with the data of various butatriene derivatives hitherto reported. ${ }^{20}$ Both signals appeared as singlets in a ${ }^{1} \mathrm{H}$-non-decoupled spectrum. The signal at $\delta 180.9$, assigned to the carbonyl carbons, appeared as a double doublet with spacings of 5.8 and 4.5 Hz in a ${ }^{1} \mathrm{H}$-nondecoupled spectrum due to ${ }^{2} J_{\mathrm{CH}}$ and ${ }^{3} J_{\mathrm{CH}}$ couplings.
As ${ }^{1} \mathrm{H}$-non-decoupled and CH -COSY spectra could not be obtained for compounds 4 and 5 because of their low solubility and the instability of these compounds in CDCl_{3}, the spectral assignments were made in analogy with those for 3 and some ambiguity remained, as shown in Table 2.
The ${ }^{13} \mathrm{C}$ peak assignments of compounds 3-5 in $\mathrm{D}_{2} \mathrm{SO}_{4}$ were made on the basis of ${ }^{1} \mathrm{H}$-non-decoupled and selectively decoupled spectra. Chemical shifts of quaternary carbons significantly depend on the ring size in $\mathrm{D}_{2} \mathrm{SO}_{4}$, in sharp contrast with those in CDCl_{3}. The signal assigned to the sp carbon of the butatriene moiety appeared as a singlet in the ${ }^{1} \mathrm{H}$-nondecoupled spectrum, while that of the sp^{2} carbon appeared as a doublet with a spacing of $\sim 2.5 \mathrm{~Hz}$, probably due to ${ }^{3} J_{\mathrm{CH}}$.
The methylene carbon signal shifts upfield upon changing the solvent from CDCl_{3} to $\mathrm{D}_{2} \mathrm{SO}_{4}$ and the magnitude of the shift increases with ring size. This upfield shift can reasonably be ascribed to the ring-current effect in these highly diatropic species.
It is generally accepted that the ring-current effect on ${ }^{13} \mathrm{C}$ chemical shifts is often obscured by other factors but has a similar magnitude to that on ${ }^{1} \mathrm{H}$ chemical shifts. ${ }^{21}$ In the present compounds, the average upfield shift of the methylene protons upon the change of solvent from CDCl_{3} to $\mathrm{D}_{2} \mathrm{SO}_{4}$ was
3.7, 5.1 and 6.1 ppm for compounds 3,4 and 5 (Table 1), respectively, and that of the methylene carbon was 5.7, 7.3 and 9.0 ppm (Table 2) and they are excellently parallel.

While the olefinic carbons shift downfield upon the solvent change, due to delocalization of the positive charge, the sp carbons of the butatriene moiety, as well as the carbonyl carbons, shift upfield and the magnitude of the shift is again parallel to the diatropicity of the species.

Flipping of the Methylene Bridge-Dynamic NMR Study.In the ${ }^{1} \mathrm{H}$ NMR spectra of $3-5$ in CDCl_{3} at ambient temperature, the methylene proton signal appeared as a sharp AB quartet indicating that the flipping of the methylene bridge was slow on the NMR timescale. The methylene signal of compound 5 at $60^{\circ} \mathrm{C}$ was somewhat broadened, suggesting that the flipping slowly occurred at this temperature. Although a detailed lineshape analysis could not be made because of the extremely low solubility and the thermal instability of the compound, the free energy of activation for the flipping was estimated to be far higher than $16 \mathrm{kcal} \mathrm{mol}^{-1} . *$ Compounds 3 and 4 are inferred to have higher flipping barriers than compound 5 because the ring sizes are smaller and the strain at the transition state for flipping would therefore be larger.
In $\mathrm{D}_{2} \mathrm{SO}_{4}$ the dicationic species 5 A showed two broad peaks for the methylene protons at $26^{\circ} \mathrm{C}$, indicating that flipping was taking place on the NMR timescale. Spectra were obtained at several temperatures between 26 and $60^{\circ} \mathrm{C}$ and lineshape

[^2]Table $1{ }^{1} \mathrm{H}$ NMR parameters of compounds $\mathbf{3 - 5}, \mathbf{2 6}, \mathbf{2 8 b}$ and $\mathbf{3 0}$ at $26^{\circ} \mathrm{C}^{a}$

Compound	$\delta_{\mathrm{H}}(\mathrm{J} / \mathrm{Hz})$ Inner protons			CH_{2}	Outer protons							$\begin{aligned} & \Delta \delta^{\mathrm{AB}} / \mathrm{ppm} \\ & \left(\Delta \Delta^{\mathrm{BC}} / \mathrm{ppm}\right) \end{aligned}$
	$\mathrm{H}^{\text {A }}$	$\mathrm{H}^{\text {c }}$	H^{E}	$\mathrm{H}^{\text {a }} \quad \mathrm{H}^{\text {b }}$	$\mathrm{H}^{\text {B }}$	$\mathrm{H}^{\text {D }}$	$\mathrm{H}^{\text {F }}$	H^{1}	H^{4}	H^{2}	H^{3}	
$26^{\text {b }}$	6.53			2.77	7.58			6.73		6.85		
3	$\begin{gathered} 6.43 \mathrm{~d} \\ (15.5) \end{gathered}$			${ }_{(13.7)}^{1.44 \mathrm{~d}, 3.02 \mathrm{~d}}$	$\begin{aligned} & 7.63 \mathrm{~d} \\ & (15.5) \end{aligned}$			6.90 m		7.07 m		1.20
$3 A^{\text {c }}$	$-1.23 \mathrm{~d}$ (14.5)			-1.44s	10.58 d (14.5)			9.17 m		9.34 m		11.81
$28 b^{\text {b }}$	6.36	6.71		2.78	7.57	6.84						
4	$6.15 \mathrm{~d}$	$6.27 \mathrm{dd}$		$1.27 \mathrm{~d}, 3.06 \mathrm{~d}$	7.68 dd	$7.06 \mathrm{~d}$		6.72 m		6.98 m		(1.41)
$4 \mathrm{~A}^{\text {c }}$	$\begin{aligned} & (14.6) \\ & -4.39 \mathrm{~d} \\ & (13.2) \end{aligned}$	$\begin{aligned} & (15.4,11.5) \\ & -2.74 \mathrm{t} \\ & (13.3) \end{aligned}$		$\begin{array}{ll} (13.4) & (13.4) \\ -2.68 \mathrm{~d}, & -3.17 \mathrm{~d} \\ (14.2) & (14.2) \end{array}$	$\begin{aligned} & (14.5,11.5) \\ & 11.00 \mathrm{t} \\ & (12.7) \end{aligned}$	$\begin{aligned} & (15.4) \\ & 10.92 \mathrm{~d} \\ & (14.0) \end{aligned}$		9.52 m		9.77 m		(13.74)
$30^{\text {b }}$	6.31	6.54	6.69	${ }^{(14.76}$ (14.2)	${ }_{7.55}$	6.83	6.62	6.45		6.68		
5	$\begin{gathered} 6.10 \mathrm{~d} \\ (14.6) \end{gathered}$	$\begin{gathered} 6.00 \mathrm{dd} \\ (14.6,11.6) \end{gathered}$	$\begin{gathered} 6.29 \mathrm{dd} \\ (15.6,11.0) \end{gathered}$	$\begin{gathered} 1.29 \mathrm{~d}, 3.12 \mathrm{~d} \\ (13.7) \end{gathered}$	$\begin{gathered} 7.74 \mathrm{dd} \\ (14.6,11.6) \end{gathered}$	$\begin{gathered} 7.05 \mathrm{dd} \\ (14.5,11.1) \end{gathered}$	$\begin{gathered} 6.84 \mathrm{~d} \\ (15.3) \end{gathered}$	6.62 m		6.90 m		(1.74)
$5 A^{\text {c }}$	$\begin{aligned} & -6.48 \mathrm{~d} \\ & (13.3) \end{aligned}$	$\begin{aligned} & -4.73 \mathrm{t} \\ & (12.9) \end{aligned}$	$\begin{aligned} & -4.25 t \\ & (13.1) \end{aligned}$	$-4.30 \mathrm{br} \mathrm{s},-3.5 \mathrm{br} \mathrm{s}$	$\begin{gathered} 17.58 \mathrm{t} \\ (13.0) \end{gathered}$	$\begin{aligned} & 11.13 \mathrm{t} \\ & (12.6) \end{aligned}$	$\begin{aligned} & 11.21 \mathrm{~d} \\ & (13.6) \end{aligned}$	9.62 m		9.98 m		(16.31)

${ }^{a}$ Obtained in CDCl_{3} at 500 MHz unless otherwise stated. ${ }^{b}$ Data for the acetylenic protons are omitted (see Experimental section). ${ }^{c}$ In $\mathrm{D}_{2} \mathrm{SO}_{4}$.

33

34
analysis* was performed to obtain the rate constants for the flipping (Fig. 4). The free energy of activation was calculated to be $\sim 14.2 \mathrm{kcal} \mathrm{mol}^{-1}$ over this temperature range.

The species 4 A showed a sharp AB-quartet signal for the methylene protons at $26^{\circ} \mathrm{C}$ but the lineshape broadening was observed at higher temperatures (Fig. 5). Lineshape analysis* afforded rough values of 80 and $30 \mathrm{~s}^{-1}$ at 78 and $65^{\circ} \mathrm{C}$, respectively, which correspond to $\Delta G^{\ddagger} 17.6 \mathrm{kcal} \mathrm{mol}^{-1}$. This value is higher than that for dication 5 A , which would be reasonable judging from the smaller ring size of dication 4A.
The species 3A showed a singlet for the methylene protons at $26^{\circ} \mathrm{C}$. This was ascribed to accidental coincidence of the chemical shifts of the intrinsically diastereotopic protons rather than to rapid flipping.
The lower energy barrier to flipping in $\mathrm{D}_{2} \mathrm{SO}_{4}$ than in CDCl_{3} observed in compound 5 may suggest a higher planarity of the molecular skeleton in the dicationic species 5A than in the neutral diketone.

The Electronic Spectra of Compounds 3-5.-The electronic absorption maxima of the annulenediones 3-5, determined in both THF and sulfuric acid, are listed in Table 3, and the absorption spectra of the [16]-3, [20]-4 and [24]-annulene-

[^3]dione 5 in THF are illustrated in Fig. 6. As is seen from Fig. 6, all the spectra are similar in shape and differ only in the bathochromic shift of each band. Table 3 shows the main absorption maxima (the strongest maxima) of compounds 3-5 in THF exhibit the same regular bathochromic shift of 37 nm as the ring size increases, reflecting the increasing number of double bonds in the π-electron systems.
The spectra of compounds 3-5 in sulfuric acid are shown in Fig. 7. It is evident from Table 3 and Fig. 7 that all the bands of compounds 3-5 show a very large bathochromic shift ($130-300$ nm) in every case on changing the solvent from THF to $\mathrm{H}_{2} \mathrm{SO}_{4}$, reflecting the extended conjugation of the respective π-electron system in $\mathrm{H}_{2} \mathrm{SO}_{4}$. In addition, it is noteworthy that the longest wavelength bands of compounds $4(792 \mathrm{~nm})$ and $5(887 \mathrm{~nm})$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$ appear at much longer wavelengths than those of the tetradehydro-[20]- $(1 ; m=n=0)(535 \mathrm{~nm})^{2}$ and -[24]annulenedione ($1 ; m=n=1$) $(614 \mathrm{~nm})^{2}$ with the same respective ring size, indicating that the diprotonated species of the former are much more highly delocalized π-electron systems than are those of the latter. Furthermore the shapes of absorption curves are rather similar to those of $[4 n+2] \pi$ tetradehydroannulenes $\mathbf{3 3 ,},{ }^{17}$ as compared with the spectra in THF, reflecting the fact that compounds 3-5 are strongly diatropic as are compounds 33 , as revealed by their ${ }^{1} \mathrm{H}$ NMR spectral data in $\mathrm{D}_{2} \mathrm{SO}_{4}$.

Experimental

M.p.s were determined on a hot-stage apparatus and are uncorrected. IR spectra were taken with a Hitachi 260-50 or a JASCO-7300 spectrophotometer as KBr discs, unless otherwise specified, and were calibrated against polystyrene; only significant maxima are described. Electronic (UV-visible) spectra were measured in THF and in sulfuric acid solutions, and run with a Hitachi 220A spectrophotometer. Mass spectra

Table $2{ }^{13} \mathrm{C}$ NMR data of compounds 3-5a

	3			4			5		
	CDCl_{3}	$\mathrm{D}_{2} \mathrm{SO}_{4}$	$\Delta \delta$	CDCl_{3}	$\mathrm{D}_{2} \mathrm{SO}_{4}$	$\Delta \delta$	CDCl_{3}	$\mathrm{D}_{2} \mathrm{SO}_{4}$	$\Delta \delta$
a	26.90	21.17	-5.73	26.49	19.16	-7.33	26.74	17.77	-8.97
x	160.28	147.10	-13.18	158.78	135.16	-23.62	158.41	126.26	-32.15
y	121.30	127.55	6.25	121.09	123.14	2.05	121.00	118.81	-2.19
z	180.90	178.20	-2.70	179.97	170.10	-9.87	179.56	165.52	-14.04
A	122.27	124.70	2.43	126.22	129.59	3.37	124.27	127.10	2.83
B	145.09	166.03	20.94	144.07	$152.38{ }^{\text {b }}$	8.31	144.64	147.17	2.53
C				127.38	139.81	12.43	$129.16{ }^{\text {b }}$	146.23	17.07
D				142.84	$163.10^{\text {b }}$	20.26	$142.45^{\text {c }}$	151.32	8.87
E							$130.52^{\text {b }}$	140.07	9.55
F							$138.07^{\text {c }}$	158.30	20.23
u	129.71	141.38	11.67	129.80	138.54	8.74	129.91	133.94	4.03
v	135.61	152.44	16.83	131.98	149.66	17.68	$131.58{ }^{\text {d }}$	148.05	16.47
w	133.59	146.14	12.55	132.27	144.24	11.97	$132.21^{\text {d }}$	142.26	10.05

${ }^{a}$ Measured at $26^{\circ} \mathrm{C}$. ${ }^{\text {b.c.d }}$ Signal pairs are mutually interchangeable in each group.

Fig. 4 Temperature-dependent ${ }^{1} \mathrm{H}$ NMR spectra of species $\mathbf{5 A}$ in $\mathrm{D}_{2} \mathrm{SO}_{4}$. On the left are the observed spectra at various temperatures $\left({ }^{\circ} \mathrm{C}\right)$ and on the right are the calculated spectra with the best-fit rate constants $\left(\mathrm{s}^{-1}\right)$.
were recorded with a JEOL JMS-D 300 spectrometer operating at 75 eV using a direct-inlet system. Fast-atom bombardment mass spectra (FAB-MS) were obtained on a JEOL JMS-AX 505W high-resolution double-focusing mass spectrometer equipped with a D 5000 data system. Ions were generated by bombardment of the target matrix with a neutral xenon atom beam (derived from a Xe^{+}ion beam accelerated at 2 kV). Samples for FAB-MS were prepared by dissolving the compounds in a m-nitrobenzyl alcohol matrix. ${ }^{1} \mathrm{H}$ NMR spectra at ambient temperature were recorded as CDCl_{3} solutions, unless otherwise specified, with a Bruker AM-500 spectrometer at 500.14 MHz . Internal SiMe_{4} (TMS) was used as a reference when the solvent was CDCl_{3}, while external
SiMe_{4} was used when the solvent was $\mathrm{D}_{2} \mathrm{SO}_{4} . J$-Values are given in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded as CDCl_{3} solution, unless otherwise indicated, on the AM-500 at 125.76 MHz with internal SiMe_{4} as reference.

All preparations of the diols $\mathbf{1 6 - 2 3}$ were carried out in the same manner as that described in detail for the representative compound 15 where ethynylmagnesium bromide was used in 10 molar equiv. excess over the starting dialdehydes 6-14. THF used in these reactions was refluxed over potassium hydroxide pellets and distilled before use. The preparations of the diketones 25-32 were carried out in the same manner as that for the representative compound 24 where activated $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}{ }^{9}$ was used in 10 molar equiv. excess over the diols 15-23.

Table 3 Electronic absorption maxima of compounds $3-5\left[\mathrm{a}\right.$, in THF, $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon_{\max } / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$; b, in $\left.\left.\mathrm{H}_{2} \mathrm{SO}_{4}, \lambda_{\text {max }} / \mathrm{nm}^{\left(\varepsilon_{\max }\right.} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)\right]$. Strongest absorptions are indicated in bold type

Fig. 5 Temperature-dependent ${ }^{1} \mathrm{H}$ NMR spectra of species 4 A in $\mathrm{D}_{2} \mathrm{SO}_{4}$. On the left are the observed spectra at various temperatures (${ }^{\circ} \mathrm{C}$) and on the right are the calculated spectra with the best-fit rate constants $\left(\mathrm{s}^{-1}\right)$.

Fig. 6 Electronic absorption spectra of [16]- 3 (------), [20]- 4 (————) and [24]-annulenedione 5 (-) in THF

Dichloromethane used in these reactions was refluxed over calcium hydride and distilled before use. Attempted Glaser couplings for the diketones 24-32 were carried out in almost the same manner as that for compound 3.

Progress of all reactions was followed by TLC on Merck precoated silica gel. Merck alumina (activity II-III) and silica gel (Daiso gel 1001 W or Daiso gel 1002 W) were used for column chromatography. Compounds were preadsorbed from diethyl ether, benzene or dichloromethane solution onto the absorbent before column chromatography. Organic extracts were washed with saturated aq. sodium chloride and dried over anhydrous sodium sulfate prior to removal of solvent. Solvents were evaporated under water-pump pressure. Ether refers to diethyl ether.

Isomeric 1,6-Bis(1-hydroxyprop-2-ynyl)cyclohepta-1,3,5trienes 15a and 15b.-To an ice-cooled, stirred solution of ethynylmagnesium bromide in THF $\left(1100 \mathrm{~cm}^{3}\right)$, prepared from gaseous acetylene, magnesium $(25.0 \mathrm{~g}, 1.03 \mathrm{~mol})$ and bromoethane $(123 \mathrm{~g}, 1.13 \mathrm{~mol}),{ }^{8}$ was added dropwise during 40 min a solution of the dialdehyde $6^{3}(1.50 \mathrm{~g}, 10.1 \mathrm{mmol})$ in THF

Fig. 7 Electronic absorption spectra of [16]-3 (-----), [20]- 4 (- ———) and [24]-annulenedione $5(\square)$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$
($200 \mathrm{~cm}^{3}$) and the mixture was stirred for 1 h at room temperature. Then saturated aq. ammonium chloride (1800 cm^{3}) was added to the ice-cooled mixture and the aqueous layer was extracted with dichloromethane. The combined organic layers were washed and dried. The dark red liquid obtained after removal of solvent was chromatographed on silica gel $(4.2 \times 5.0 \mathrm{~cm})$. The initial fractions eluted with benzenedichloromethane $(2: 3)$ afforded the RS-isomer 15 a (378 mg , 19%) of the diacetylenic diol as needles, m.p. $88-89^{\circ} \mathrm{C}$ (from hexane-dichloromethane); $m / z 200\left(\mathrm{M}^{+}, 18 \%\right)$ and 153 (100), $\lambda_{\text {max }} / \mathrm{nm} 210\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 15500\right)$ and 273 (4850); $v_{\max } / \mathrm{cm}^{-1} 3350(\mathrm{OH}), 3300(\mathrm{C} \equiv \mathrm{CH})$ and $\left.2140 \mathrm{C} \equiv \mathrm{C}\right) ; \delta_{\mathrm{H}}$ $6.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right), 6.33\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right), 5.03(2 \mathrm{H}, \mathrm{dd}, J 5.6$ and 2.0 , $\mathrm{CHOH}), 3.12$ and $2.39\left(2 \mathrm{H}, \mathrm{AB}-\mathrm{q}, J 13.6, \mathrm{CH}_{2}\right), 3.08(2 \mathrm{H}, \mathrm{d}, J$ $5.7, \mathrm{OH})$ and $2.63(2 \mathrm{H}, \mathrm{d}, J 2.2, \equiv \mathrm{CH}) ; \delta_{\mathrm{C}} 134.2(\mathrm{q}), 130.3(\mathrm{t})$, $124.0(\mathrm{t}), 82.6(\mathrm{q},-\mathrm{C} \equiv), 74.5(\mathrm{t}, \equiv \mathrm{CH}), 65.6(\mathrm{t}, \mathrm{CHOH})$ and 28.2 (s, CH_{2}) (Found: C, $78.0 ; \mathrm{H}, 5.9 . \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.0 ; \mathrm{H}$, 6.0%).

The later fractions, eluted with 10% ethyl acetate in dichloromethane, afforded the $R^{*} R^{*}$-isomer $15 \mathrm{~b}(416 \mathrm{mg}, 21 \%)$ as a pale yellow liquid; $m / z 200.0845\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}\right.$ requires M , 200.0835); $\lambda_{\text {max }} / \mathrm{nm} 210(14000)$ and 274 (4300); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$
$3300(\mathrm{OH}), 3260(\mathrm{C} \equiv \mathrm{CH})$ and $2110 \mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}} 6.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right)$, 6.40 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}$), 5.05 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.2$, CHOH), 3.49 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 2.70\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and $2.63(2 \mathrm{H}, \mathrm{d}, J 2.2, \equiv \mathrm{CH})$; $\delta_{\mathrm{C}} 134.0$ (q), 130.3 (t), 123.9 (t), $82.5(\mathrm{q},-\mathrm{C} \equiv), 74.8$ ($\mathrm{t}, \equiv \mathrm{CH}), 65.4$ (t , CHOH) and 29.1 (s, CH_{2}) (Found: C, $77.45 ; \mathrm{H}, 6.6 \%$). Attempts to improve the elemental analysis failed.

1,6-Bis(1-oxoprop-2-ynyl) cyclohepta-1,3,5-triene 24.-A
mixture of the $R S$-isomer 15 a ($615 \mathrm{mg}, 3.07 \mathrm{mmol}$) and $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}(7.0 \mathrm{~g}, 27.3 \mathrm{mmol})$ in dry dichloromethane (500 cm^{3}) was stirred for 4.5 h at room temperature. Then the mixture was filtered through Celite by suction and the inorganic material was washed with dichloromethane. The combined filtrate and washings were concentrated under reduced pressure. The residue obtained after removal of solvent was chromatographed on silica gel ($4.2 \times 7.0 \mathrm{~cm}$). The fractions eluted with $20-30 \%$ dichloromethane in benzene afforded the diketone 24 ($520 \mathrm{mg}, 86 \%$) as yellow needles, m.p. $158-160^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); $m / z 196\left(\mathrm{M}^{+}, 90 \%\right)$ and 115 (100) $\left(\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{O}_{2}\right.$ requires $\left.\mathrm{M}, 196.1\right) ; \lambda_{\text {max }} / \mathrm{nm} 258$ (14 200) and 334 (5930); $v_{\text {max }} / \mathrm{cm}^{-1} 3290(\mathrm{C} \equiv \mathrm{CH}), 2080(\mathrm{C} \equiv \mathrm{C})$ and 1630 and $1620(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} 7.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right), 7.05(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}^{2}\right)$, $3.28(2 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH})$ and $3.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}} 175.3(\mathrm{q}$, $\mathrm{C}=0$), 138.3 (t , 134.63 (q), 134.57 (t$), 79.8(\mathrm{q},-\mathrm{C} \equiv), 79.7(\mathrm{t}$, $\equiv \mathrm{CH}$) and $20.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$ (Found: C, 79.5; H, 4.3. $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.6 ; \mathrm{H}, 4.1 \%$).

A mixture of the $R^{*} R^{*}$-isomer $\mathbf{1 5 b}(430 \mathrm{mg}, 2.15 \mathrm{mmol})$ and $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}{ }^{9}(4.00 \mathrm{~g}, 15.6 \mathrm{mmol})$ in dry dichloromethane (300 cm^{3}) was stirred for 2.5 h at room temperature. The mixture was worked up as described above. The product was chromatographed on silica gel ($4.2 \times 3.5 \mathrm{~cm}$). The fractions eluted with 30% dichloromethane in benzene afforded the diketone 24 ($300 \mathrm{mg}, 71 \%$).
Attempted Glaser coupling of the diketone 24 under the conditions reported for the preparation of compound 3 described below did not afford the corresponding [12]annulenedione.

1-(3-Hydroxypent-1-en-4-ynyl)-6-(1-hydroxyprop-2-ynyl)cy-clohepta-1,3,5-triene 16.-To an ice-cooled, stirred solution of ethynylmagnesium bromide in THF ($1350 \mathrm{~cm}^{3}$), prepared from gaseous acetylene, magnesium ($30.0 \mathrm{~g}, 1.23 \mathrm{~mol}$) and bromoethane ($147 \mathrm{~g}, 1.35 \mathrm{~mol}$), was added dropwise during 1 h a solution of the dialdehyde $7^{3}(1.50 \mathrm{~g}, 8.61 \mathrm{mmol})$ in THF (100 cm^{3}) and the mixture was stirred for 30 min at room temperature before being worked up as for the isolation of compound 15 except for the use of benzene as the extraction solvent. The product was chromatographed on silica gel $(4.2 \times 6.0 \mathrm{~cm})$. The fractions eluted with benzene-dichloromethane ($1: 9$) afforded the diol $16(1.04 \mathrm{~g}, 53 \%)$ as pale yellow needles, m.p. $98-100^{\circ} \mathrm{C}$ (from hexane-dichloromethane); m / z $226\left(\mathrm{M}^{+}, 7 \%\right)$ and $115(100)\left(\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}\right.$ requires $\left.\mathrm{M}, 226.3\right)$; $\lambda_{\text {max }} / \mathrm{nm} 227$ (26400), 231 (27500) and 306 (7520); $v_{\max } / \mathrm{cm}^{-1}$ $3300(\mathrm{OH}), 3280(\mathrm{C} \equiv \mathrm{CH}), 2120 \mathrm{C} \equiv \mathrm{C})$ and 1007 and $957[(E)-$ $\mathrm{HC}=\mathrm{CH}$] (Found: $\mathrm{C}, 79.9 ; \mathrm{H}, 6.2 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.6$; $\mathrm{H}, 6.2 \%)$. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 16 showed it to be a $\sim 5: 2$ mixture of two diastereoisomers. The major isomer: $\delta_{\mathrm{H}} 6.61\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and $\left.5.8, \mathrm{H}^{2}\right), 6.56(1 \mathrm{H}, \mathrm{dd}, J 11.2$ and $\left.5.7, \mathrm{H}^{3}\right), 6.51\left(1 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{H}^{\mathrm{B}}\right), 6.40\left(1 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{H}^{4}\right), 6.24(1$ $\mathrm{H}, \mathrm{d}, J 5.8, \mathrm{H}^{1}$), $6.18\left(1 \mathrm{H}, \mathrm{dd}, J 15.6\right.$ and $\left.6.1, \mathrm{H}^{\mathrm{A}}\right), 5.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{C} H^{\mathrm{a}} \mathrm{OH}$), $4.91\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C} H^{\mathrm{b}} \mathrm{OH}\right), 2.71$ and $2.66(2 \mathrm{H}, \mathrm{AB}-\mathrm{q}, J$ $13.3, \mathrm{CH}_{2}$), $2.617\left(1 \mathrm{H}, \mathrm{d}, J 2.2, \equiv \mathrm{CH}^{\mathrm{b}}\right)$, $2.610(1 \mathrm{H}, \mathrm{d}, J 2.2$, $\left.\equiv \mathrm{CH}^{\mathrm{a}}\right), 2.395\left(1 \mathrm{H}, \mathrm{brd}, J 6, \mathrm{OH}^{\mathrm{b}}\right)$ and $2.385(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 6$, $\left.\mathrm{OH}^{\mathrm{a}}\right) ; \delta_{\mathrm{C}} 133.1(\mathrm{q}), 132.9(\mathrm{t}), 131.22(\mathrm{q}), 130.9(\mathrm{t}), 130.0(\mathrm{t}), 128.8$ (t), $128.0(\mathrm{t}), 123.7(\mathrm{t}), 82.9(\mathrm{q},-\mathrm{C} \equiv), 81.9(\mathrm{q},-\mathrm{C} \equiv), 74.7(\mathrm{t}, \equiv \mathrm{CH})$, $74.5(\mathrm{t}, \equiv \mathrm{CH}), 65.4(\mathrm{t}, \mathrm{CHOH}), 62.7(\mathrm{t}, \mathrm{CHOH})$ and $27.8(\mathrm{~s}$, CH_{2}). The minor isomer: $\delta_{\mathrm{H}} 6.61\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and $\left.5.8, \mathrm{H}^{2}\right)$, $6.56\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and $\left.5.7, \mathrm{H}^{3}\right), 6.50\left(1 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{H}^{\mathrm{B}}\right), 6.39(1$
$\left.\mathrm{H}, \mathrm{d}, J 6.1, \mathrm{H}^{4}\right), 6.24\left(1 \mathrm{H}, \mathrm{d}, J 5.8, \mathrm{H}^{1}\right), 6.18(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $\left.6.3, \mathrm{H}^{\mathrm{A}}\right), 5.00\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{CH}^{\mathrm{a}} \mathrm{OH}\right), 4.91\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{CH} H^{\mathrm{b}} \mathrm{OH}\right), 2.72$ and $2.67\left(2 \mathrm{H}, \mathrm{AB}-\mathrm{q}, J 13.3, \mathrm{CH}_{2}\right), 2.62\left(1 \mathrm{H}, \mathrm{d}, J 2.2, \equiv \mathrm{CH}^{\mathrm{b}}\right), 2.61$ $\left(1 \mathrm{H}, \mathrm{d}, J 2.2, \equiv \mathrm{CH}^{\mathrm{a}}\right), 2.395\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 6, \mathrm{OH}^{\mathrm{b}}\right)$ and $2.385(1 \mathrm{H}$, br d, $\left.J 6, \mathrm{OH}^{\mathrm{a}}\right) ; \delta_{\mathrm{c}} 132.93(\mathrm{q}), 132.91(\mathrm{t}), 131.3(\mathrm{q}), 130.9(\mathrm{t})$, $130.0(\mathrm{t}), 128.8(\mathrm{t}), 128.0(\mathrm{t}), 123.8(\mathrm{t}), 82.9(\mathrm{q},-\mathrm{C} \equiv), 81.8(\mathrm{q}$, $-\mathrm{C} \equiv), 74.8(\mathrm{t}, \equiv \mathrm{CH}), 74.5(\mathrm{t}, \equiv \mathrm{CH}), 65.4(\mathrm{t}, \mathrm{CHOH}), 62.8(\mathrm{t}$, $\mathrm{CHOH})$ and $27.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$.

1-(3-Oxopent-1-en-4-ynyl)-6-(1-oxoprop-2-ynyl)cyclohepta-$1,3-5$-triene 25.-A mixture of the diol 16 ($958 \mathrm{mg}, 4.23 \mathrm{mmol}$) and $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}(10.0 \mathrm{~g}, 39.0 \mathrm{mmol})$ in dry dichloromethane ($700 \mathrm{~cm}^{3}$) was stirred for 3.5 h at room temperature before being worked up as for the isolation of compound 24 . The product was chromatographed on silica gel ($4.2 \times 4.5 \mathrm{~cm}$). The fractions eluted with benzene-dichloromethane ($1: 1$) afforded the diketone 25 ($792 \mathrm{mg}, 84 \%$) as yellow needles, m.p. 146 $155^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); $m / z 222$ $\left(\mathrm{M}^{+}, 56 \%\right)$ and $115(100)\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{2}\right.$ requires $\left.\mathrm{M}, 222.2\right)$; $\lambda_{\text {max }} / \mathrm{nm} 224$ (14 200), 283 (27300) and 375 (10200); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3212(\mathrm{C} \equiv \mathrm{CH}), 2100(\mathrm{C} \equiv \mathrm{C}), 1618(\mathrm{C}=\mathrm{O})$ and $973[(E)-\mathrm{HC}=\mathrm{CH}]$; $\delta_{\mathrm{H}} 7.62\left(1 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{H}^{4}\right), 7.51\left(1 \mathrm{H}, \mathrm{d}, J 15.7, \mathrm{H}^{\mathrm{B}}\right), 7.02(1 \mathrm{H}, \mathrm{dd}$, $J 11.1$ and $6.1, \mathrm{H}^{2}$), $6.94\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and $\left.6.1, \mathrm{H}^{3}\right), 6.92(1 \mathrm{H}$, $\left.\mathrm{d}, J 15.7, \mathrm{H}^{\mathrm{A}}\right), 6.69\left(1 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{H}^{1}\right), 3.254(1 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH}), 3.252$ $(1 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH})$ and $2.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 177.3(\mathrm{q}, \mathrm{C}=\mathrm{O}), 175.5$ ($\mathrm{q}, \mathrm{C}=\mathrm{O}$), 148.0 (t$), 138.8$ (t), 135.9 (t$), 134.1$ (t$), 132.7$ (q), 132.3 (q), 132.0 (t), 129.6 (t), $80.4(\mathrm{q},-\mathrm{C} \equiv), 79.7$ (q, $-\mathrm{C} \equiv$), 79.3 (t , $\equiv \mathrm{CH}$), $79.0(\mathrm{t}, \equiv \mathrm{CH})$ and $24.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$ (Found: C, 81.1; H, 4.6. $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{2}$ requires $\mathrm{C}, 81.1 ; \mathrm{H}, 4.5 \%$).

Glaser coupling of the diketone 25 under the conditions reported for the preparation of compound 3 described below afforded supposed cyclization products in low yields. \dagger

1,6-Bis(3-hydroxypent-1-en-4-ynyl)cyclohepta-1,3,5-triene

 17.-To an ice-cooled, stirred solution of ethynylmagnesium bromide in THF ($800 \mathrm{~cm}^{3}$), prepared from gaseous acetylene, magnesium ($17.4 \mathrm{~g}, 0.71 \mathrm{~mol}$) and bromoethane $(85 \mathrm{~g}, 0.78$ mol), ${ }^{8}$ was added dropwise during 2 h a solution of the dialdehyde $8^{3}(1.00 \mathrm{~g}, 4.99 \mathrm{mmol})$ in THF $\left(150 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 30 min at room temperature before being worked up as for the isolation of compound 15 . The product was chromatographed on silica gel ($4.2 \times 7.5 \mathrm{~cm}$). The fractions eluted with $80-90 \%$ dichloromethane in benzene afforded the diol $17(512 \mathrm{mg}, 41 \%)$ as pale orange needles, m.p. $96-107^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); $m / z 252$ $\left(\mathrm{M}^{+}, 73 \%\right)$ and $165(100)\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}\right.$ requires $\left.\mathrm{M}, 252.3\right)$; $\lambda_{\text {max }} / \mathrm{nm} 210 \mathrm{sh}(8300)$, 242sh (42800), 249 (48300) and 338 (7200); $v_{\max } / \mathrm{cm}^{-1} 3300(\mathrm{OH}), 3260(\mathrm{C} \equiv \mathrm{CH}), 2130(\mathrm{C} \equiv \mathrm{C})$ and 1010 and $970[(E)-\mathrm{HC}=\mathrm{CH}]$. Compound 17 was a $\sim 1: 1$ mixture of the $R^{*} R^{*}$ and $R S$ diastereoisomers, but the chemical-shift differences between the isomers were observed for the CH_{2} and OH protons, and CH^{A} and CHOH carbons: δ_{H} $6.65\left(\mathrm{~m}, \mathrm{H}^{2}\right), 6.57\left(\mathrm{~d}, J 15.6, \mathrm{H}^{\mathrm{B}}\right), 6.31\left(\mathrm{~m}, \mathrm{H}^{1}\right), 6.13(\mathrm{dd}, J 15.6$ and $\left.6.2, \mathrm{H}^{\mathrm{A}}\right), 5.01(\mathrm{brt}, J 6.2, \mathrm{CHOH}), 2.61(\mathrm{~d}, J 2.2, \equiv \mathrm{CH}), 2.59$ and $2.53\left(\mathrm{AB}-\mathrm{q}, J 13.1, \mathrm{CH}_{2}\right.$ of $R S$ isomer), $2.56\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of $R^{*} R^{*}$ isomer), 2.46 (d, $J 6.6, \mathrm{OH}$ of one isomer) and 2.45 (d, J 6.6, OH of the other isomer); $\delta_{\mathrm{C}} 133.4(\mathrm{t}), 130.7$ (t), 129.8 (q), $128.4(\mathrm{t}), 127.51,127.48\left(\mathrm{t}, \mathrm{CH}^{\mathrm{A}}\right), 82.8(\mathrm{q},-\mathrm{C} \equiv), 74.7(\mathrm{t}, \equiv \mathrm{CH})$, 62.76, 62.73 (t, CHOH) and 27.1 (s, CH_{2}) (Found: C, 80.95; H, 6.45. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.9 ; \mathrm{H}, 6.4 \%$).1,6-Bis(3-oxopent-1-en-4-ynyl)cyclohepta-1,3,5-triene 26.A mixture of the isomeric diol $17(328 \mathrm{mg}, 1.30 \mathrm{mmol})$ and

[^4]$\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}(3.0 \mathrm{~g}, 11.7 \mathrm{mmol})$ in dry dichloromethane (200 cm^{3}) was stirred for 6 h at room temperature before being worked up as for the isolation of compound 24. The product was chromatographed on silica gel ($4.2 \times 6.5 \mathrm{~cm}$). The fractions eluted with $40-60 \%$ benzene in hexane afforded the diketone $26(200 \mathrm{mg}, 62 \%)$ as yellow needles, m.p. $160-167^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); $m / z 248\left(\mathrm{M}^{+}\right.$, 100%) ($\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{M}, 248.2$); $\lambda_{\text {max }} / \mathrm{nm} 233$ (17 100), 303 (51900) and 396 (11900); $v_{\text {max }} / \mathrm{cm}^{-1} 3200(\mathrm{C} \equiv \mathrm{CH}), 2105(\mathrm{C} \equiv \mathrm{C})$, $1630(\mathrm{C}=\mathrm{O})$ and $985[(E)-\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}} 7.58\left(2 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{H}^{\mathrm{B}}\right)$, $6.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right), 6.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right), 6.53\left(2 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{H}^{\mathrm{A}}\right)$, $3.28(2 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH})$ and $2.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 177.0(\mathrm{q}, \mathrm{C}=\mathrm{O})$, 149.0 (t), 135.8 (t), 133.4 (t), 130.6 (q), 127.8 (t), 80.2 ($\mathrm{q},-\mathrm{C} \equiv$), $79.3(\mathrm{t}, \equiv \mathrm{CH})$ and $26.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$ (Found: C, 82.0; H, 4.9. $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{C}, 82.2 ; \mathrm{H}, 4.9 \%$).

10,13-Dichloro-11,12-didehydro-1,6-methano[16]annulene-9, 14-dione 3.-A solution of the diketone $26(161 \mathrm{mg}, 0.648$ $\mathrm{mmol})$ in ethanol-benzene $\left(3: 1 ; 156 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred solution of copper(I) chloride ($44.3 \mathrm{~g}, 0.448 \mathrm{~mol}$), ammonium chloride (71 g), water ($197 \mathrm{~cm}^{3}$) and conc. $\mathrm{HCl}(0.81$ cm^{3}) at $60^{\circ} \mathrm{C}$. After the mixture had been stirred for 10 min , a further quantity of benzene-ethanol $\left(1: 1 ; 123 \mathrm{~cm}^{3}\right)$ was added. The mixture was stirred for a further 2 h at $60^{\circ} \mathrm{C}$ while a stream of oxygen was bubbled into the mixture. Then the mixture was cooled, poured onto water, and extracted with benzene. The combined organic layers were washed successively with 5% HCl , brine and aq. sodium hydrogen carbonate, and were then dried and concentrated. The residue obtained after removal of solvent was chromatographed on silica gel ($3.6 \times 6.5 \mathrm{~cm}$). The fractions eluted with hexane-benzene ($2: 3$) afforded the didehydro [16]annulenedione $3(34 \mathrm{mg}, 17 \%)$ as dark red needles, m.p. $129-135^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); $m / z 318\left(\mathrm{M}^{+}+1,32 \%\right), 316\left(\mathrm{M}^{+}-1,50\right)$ and $189(100)$ $\left(\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}\right.$ requires $\mathrm{M}, 317.2$); for UV data see Table 3, Figs. 6 and 7; $v_{\text {max }} / \mathrm{cm}^{-1} 2040(-\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}-), 1665(\mathrm{C}=\mathrm{O}), 990$ and $960([E)-\mathrm{HC}=\mathrm{CH}]$; for ${ }^{1} \mathrm{H}$ NMR data see Table 1, Figs. 2 and 3; for ${ }^{13} \mathrm{C}$ NMR data see Table 2 (Found: C, 64.4; H, 3.5. $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 64.4 ; \mathrm{H}, 3.2 \%$).

1-(5-Hydroxyhepta-1,3-dien-6-ynyl)-6-(3-hydroxypent-1-en-4ynyl) cyclohepta-1,3,5-triene 18.-To an ice-cooled, stirred solution of ethynylmagnesium bromide in THF ($600 \mathrm{~cm}^{3}$), prepared from gaseous acetylene, magnesium (14 g) and bromoethane $(69.5 \mathrm{~g})$, was added dropwise during 30 min a solution of the dialdehyde $9^{3}(0.95 \mathrm{~g}, 4.2 \mathrm{mmol})$ in THF ($100 \mathrm{~cm}^{3}$) and the mixture was stirred for 2 h at room temperature before being worked up as for the isolation of compound 15 . The product was chromatographed on silica gel ($3.8 \times 6.0 \mathrm{~cm}$). The fractions eluted with 5% ethyl acetate in dichloromethane afforded the diol 18 ($358 \mathrm{mg}, 43 \%$) as pale yellow microcrystals, m.p. $117-126^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); m / z $278\left(\mathrm{M}^{+}, 20 \%\right)$ and $165(100)\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}\right.$ requires $\left.\mathrm{M}, 278.3\right)$; $\lambda_{\text {max }} / \mathrm{nm} 224 \mathrm{sh}(10600), 251 \mathrm{sh}(28600), 262(51300), 270$ (60200) and $360(10000)$) $v_{\text {max }} / \mathrm{cm}^{-1} 3300(\mathrm{OH}), 3270(\mathrm{C} \equiv \mathrm{CH})$, $2110 \mathrm{C} \equiv \mathrm{C})$ and $990[(E)-\mathrm{HC}=\mathrm{CH}]$. Although compound 18 was a 5:1 mixture of two diastereoisomers, the difference in chemical shifts between the diasereoisomers was observed only for the methylene protons, and $\mathrm{CH}^{\mathrm{A}}, \mathrm{CH}^{\mathrm{A}^{\prime}}$ and CHOH carbons: δ_{H} 6.63-6.59 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}, \mathrm{H}^{3}$ and $\left.\mathrm{H}^{\mathrm{C}}\right), 6.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.15.3, \mathrm{H}^{\mathrm{B}}\right), 6.53\left(1 \mathrm{H}, \mathrm{dd}, J 14.8\right.$ and $\left.10.6, \mathrm{H}^{\mathrm{B}}\right), 6.44(1 \mathrm{H}, \mathrm{d}, J 15.1$, $\left.\mathrm{H}^{\mathrm{D}}\right), 6.32\left(1 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{H}^{1}\right.$ or $\left.\mathrm{H}^{4}\right), 6.30\left(1 \mathrm{H}, \mathrm{d}, J 5.2, \mathrm{H}^{4}\right.$ or $\left.\mathrm{H}^{1}\right)$, $6.12\left(1 \mathrm{H}, \mathrm{dd}, J 15.6\right.$ and $\left.6.1, \mathrm{H}^{\mathrm{A}}\right)$, $5.95(1 \mathrm{H}$, dd, $J 14.7$ and 6.1 , H^{A}), $5.03\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C} H^{\mathrm{b}} \mathrm{OH}\right), 4.97\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C} H^{\mathrm{a}} \mathrm{OH}\right), 2.66$ and $2.59\left(2 \mathrm{H}, \mathrm{AB}-\mathrm{q}, J 13.0, \mathrm{CH}_{2}\right.$ of the major isomer), 2.64 and 2.60 (AB-q, $J 13.0, \mathrm{CH}_{2}$ of the minor isomer), $2.65(1 \mathrm{H}, \mathrm{d}, J 2.2$, $\left.\equiv \mathrm{CH}^{b}\right), 2.60\left(1 \mathrm{H}, \mathrm{d}, J 2.2, \equiv \mathrm{CH}^{a}\right), 1.96\left(1 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{OH}^{\mathrm{b}}\right)$ and $1.92\left(1 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{OH}^{\mathrm{a}}\right)$ (the chemical shifts with integrals of
protons given refer to the major isomer); $\delta_{\mathrm{C}} 135.7(\mathrm{t}), 133.4$ and $132.7\left(\mathrm{t}, \mathrm{CH}^{\mathrm{A}}\right.$ and $\mathrm{CH}^{\mathrm{A}^{\prime}}$ of the major isomer), 133.3 and $132.7(\mathrm{t}$, CH^{A} and $\mathrm{CH}^{\mathrm{A}^{\top}}$ of the minor isomer), $131.6(\mathrm{t}), 131.3(\mathrm{q}), 130.9$ (t), 130.4 (t), 130.1 (q), 128.7 (t), 128.1 (t$), 127.4$ (t$), 127.1$ (t$)$, $82.70(\mathrm{q},-\mathrm{C} \equiv), 82.66(\mathrm{q},-\mathrm{C} \equiv), 74.6(\mathrm{t}, \equiv \mathrm{CH}), 74.5(\mathrm{t}, \equiv \mathrm{CH}), 62.74$ and $62.49(\mathrm{t}, \mathrm{CHOH}$ of the major isomer), 62.71 and $62.48(\mathrm{t}$, CHOH of the minor isomer) and $27.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$ (Found: C, 81.7; $\mathrm{H}, 6.6 . \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 82.0 ; \mathrm{H}, 6.5 \%$).

1-(5-Oxohepta-1,3-dien-6-ynyl)-6-(3-oxopent-1-en-4-ynyl)-cyclohepta-1,3,5-triene 27.-A mixture of the isomeric diol $18(370 \mathrm{mg})$ and $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}(8.00 \mathrm{~g})$ in dichloromethane (300 cm^{3}) was stirred for 6 h at room temperature before being worked up as for the isolation of compound 24 . The product was chromatographed on silica gel $(3.8 \times 6.0 \mathrm{~cm})$. The fractions eluted with dichloromethane afforded the diketone 27 (239 $\mathrm{mg}, 65 \%$) as orange needles, m.p. $134-137^{\circ} \mathrm{C}$ (decomp.) (from hexane-THF); $m / z 274\left(\mathrm{M}^{+}, 26 \%\right)$ and $115(100)\left(\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2}\right.$ requires $\mathrm{M}, 274.3$); $\lambda_{\text {max }} / \mathrm{nm} 230(12400), 320$ (46500) and 415 (12400); $v_{\max } / \mathrm{cm}^{-1} 3200(\mathrm{C} \equiv \mathrm{CH}), 2110(\mathrm{C} \equiv \mathrm{C}), 1620(\mathrm{C}=\mathrm{O}), 1000$ and $980[(E)-\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}} 7.59\left(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{H}^{\mathrm{B}^{\prime}}\right), 7.56(1 \mathrm{H}$, dd, $J 15.3$ and $\left.10.4, \mathrm{H}^{\mathrm{B}}\right), 6.84-6.72\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\mathrm{C}}, \mathrm{H}^{\mathrm{D}}, \mathrm{H}^{1}, \mathrm{H}^{2}\right.$ and $\left.\mathrm{H}^{3}\right), 6.54\left(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{H}^{4}\right), 6.52\left(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{H}^{\mathrm{A}^{\prime}}\right), 6.42(1 \mathrm{H}$, $\left.\mathrm{d}, J 15.3, \mathrm{H}^{\mathrm{A}}\right), 3.28(1 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH}), 3.26(1 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH})$ and $2.77(2$ $\mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$) (Found: C, 83.4; H, 5.4. $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, 83.2; $\mathrm{H}, 5.15 \%$).

Attempted Glaser coupling of the diketone 27 under the conditions reported for the preparation of compound 3 did not afford the corresponding [18] annulenedione.

Isomeric 1,6-Bis(5-hydroxyhepta-1,3-dien-6-ynyl)cyclohepta-1,3,5-trienes 19a and 19b.-(a) Bisethynylation of a mixture of dialdehydes 10 a and 10 b . To an ice-cooled solution of ethynylmagnesium bromide in THF ($500 \mathrm{~cm}^{3}$), prepared from gaseous acetylene, magnesium (15 g) and bromoethane (79 g), was added dropwise during 30 min a solution of an isomeric mixture of the dialdehydes 10 a and $10 \mathrm{~b}^{4}(1.20 \mathrm{~g}, 475 \mathrm{mmol})$ in THF $\left(100 \mathrm{~cm}^{3}\right)$, and the mixture was stirred for 2 h at room temperature before being worked up as for the isolation of compound 15. The product was chromatographed on alumina $(2.2 \times 7.5 \mathrm{~cm})$. The initial fractions eluted with $30-50 \%$ dichloromethane in benzene afforded the (E, Z), (E, Z)-isomer 19b ($326 \mathrm{mg}, 25 \%$) as orange needles, m.p. $111-113^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); $m / z 304\left(\mathrm{M}^{+}, 63 \%\right)$ and $165(100)\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2}\right.$ requires $\left.\mathrm{M}, 304.4\right) ; \lambda_{\text {max }} / \mathrm{nm} 278$ (76400), 288 (91300) and 385 (9000); $v_{\text {max }} / \mathrm{cm}^{-1} 3300(\mathrm{OH})$, $3270(\mathrm{C} \equiv \mathrm{CH}), 2120(\mathrm{C} \equiv \mathrm{C}), 1010$ and $1000[(E)-\mathrm{HC}=\mathrm{CH}]$ and $650[(Z)-\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}} 6.90\left(2 \mathrm{H}\right.$, dd, $J 15.1$ and $\left.11.3, \mathrm{H}^{\mathrm{C}}\right), 6.63$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}$), $6.47\left(2 \mathrm{H}, \mathrm{d}, J 15.1, \mathrm{H}^{\mathrm{D}}\right), 6.34\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right), 6.25(2$ $\mathrm{H}, \mathrm{dd}, J 11.3$ and $\left.10.0, \mathrm{H}^{\mathrm{B}}\right), 5.65\left(2 \mathrm{H}, \mathrm{dd}, J 10.0\right.$ and $\left.8.5, \mathrm{H}^{\mathrm{A}}\right)$, $5.44(2 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.28$ and $2.06\left(2 \mathrm{H}, \mathrm{AB}-\mathrm{q}, J 13.1, \mathrm{CH}_{2}\right)$, $3.09(2 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{OH})$ and $2.58(2 \mathrm{H}, \mathrm{d}, J 2.2, \equiv \mathrm{CH})$. The appearance of the methylene proton signal as an AB -quartet suggests that isomer 19b consists solely of the $R S$-diastereoisomer at the two asymmetric carbon atoms (Found: C, 82.6; $\mathrm{H}, 6.6 . \mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 82.9 ; \mathrm{H}, 6.6 \%$).

The later fractions, eluted with $20-40 \%$ acetone in benzene, afforded the (E,E),(E,Z)-isomer $19 \mathrm{a}(297 \mathrm{mg}, 21 \%$) as yellow plates, m.p. $145-148^{\circ} \mathrm{C}$ (decomp.) (from hexane-THF); $m / z 304$ $\left(\mathrm{M}^{+}, 100 \%\right)\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2}\right.$ requires $\left.\mathrm{M}, 304.3\right) ; \lambda_{\text {max }} / \mathrm{nm} 276$ (71100), $286(90900)$ and $383(10300) ; v_{\text {max }} / \mathrm{cm}^{-1} 3300(\mathrm{OH})$, $3250(\mathrm{C} \equiv \mathrm{CH}), 2100(\mathrm{C} \equiv \mathrm{C}), 1000,980[(E)-\mathrm{HC}=\mathrm{CH}]$ and 660 $[(Z)-\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}} 6.87\left(1 \mathrm{H}, \mathrm{dd}, J 15.2\right.$ and $\left.11.5, \mathrm{H}^{\mathrm{C}}\right), 6.74(1 \mathrm{H}$, dd, 15.2 and $\left.10.7, \mathrm{H}^{\mathrm{C}^{\prime}}\right), 6.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right.$ and $\left.\mathrm{H}^{3}\right), 6.63(1 \mathrm{H}, \mathrm{dd}, J$ 14.9 and $\left.10.7, \mathrm{H}^{\mathrm{B}^{\prime}}\right), 6.47\left(1 \mathrm{H}, \mathrm{d}, J 15.2, \mathrm{H}^{\mathrm{D}^{\prime}}\right), 6.45(1 \mathrm{H}, \mathrm{d}, J$ $\left.15.2, \mathrm{H}^{\mathrm{D}}\right), 6.33\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right.$ and $\left.\mathrm{H}^{4}\right), 6.22\left(1 \mathrm{H}, \mathrm{t}, J 11.5, \mathrm{H}^{\mathrm{B}}\right)$, $6.12\left(1 \mathrm{H}\right.$, dd, $J 14.9$ and $\left.5.9, \mathrm{H}^{\mathrm{A}^{\prime}}\right), 5.62(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and 8.2 , $\left.\mathrm{H}^{\mathrm{A}}\right), 5.34\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{CH}^{\mathrm{a}} \mathrm{OH}\right), 5.03\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{CH}^{\mathrm{b}} \mathrm{OH}\right), 2.87$
and $2.40\left(2 \mathrm{H}, \mathrm{AB}-\mathrm{q}, J 13.0, \mathrm{CH}_{2}\right), 2.62\left(1 \mathrm{H}, \mathrm{d}, J 2.1, \equiv \mathrm{CH}^{\mathrm{b}}\right)$, $2.62\left(1 \mathrm{H}, \mathrm{d}, J 2.2, \equiv \mathrm{CH}^{\mathrm{a}}\right), 2.40\left(1 \mathrm{H}\right.$, br d$\left., J 4.9, \mathrm{OH}^{\mathrm{a}}\right)$ and $2.34\left(1 \mathrm{H}\right.$, br d, $\left.J 6.0, \cdot \mathrm{OH}^{\mathrm{b}}\right)$. Compound 19a consists of only one diastereoisomer at the two asymmetric carbon atoms (Found: C, 82.7; H, 6.7\%).
(b) Bisethynylation of dialdehyde 10a. To an ice-cooled, stirred solution of ethynylmagnesium bromide in THF (600 cm^{3}), prepared from gaseous acetylene, magnesium (15.0 g) and bromoethane (74.3 g), was added dropwise during 1.5 h a solution of the dialdehyde $10 \mathrm{a}^{4}(1.16 \mathrm{~g}, 4.59 \mathrm{mmol})$ in THF (100 cm^{3}) and the mixture was stirred for 1 h at room temperature before being worked up as for the isolation of compound 16. The product was chromatographed on silica gel ($4.2 \times 7.5 \mathrm{~cm}$) . The fractions eluted with $5-10 \%$ ethyl acetate in dichloromethane afforded the $(E, E),(E, Z)$-isomer 19 a $(556 \mathrm{mg}$, 40%).

Attempted Eglinton Coupling of Diol 19a.-A solution of the diol 19a ($190 \mathrm{mg}, 0.624 \mathrm{mmol}$) in a mixture of pyridine-ether ($3: 1 ; 480 \mathrm{~cm}^{3}$) was added dropwise during 6 h to a stirred solution of anhydrous copper(II) acetate (5.00 g) in a mixture of pyridine-ether $\left(3: 1 ; 240 \mathrm{~cm}^{3}\right)$ at $50^{\circ} \mathrm{C}$, and the mixture was stirred for a further 30 min at the same temperature. Then the mixture was poured onto water and extracted with chloroform. The combined extracts were washed successively with $7 \% \mathrm{HCl}$ until they turned acidic to litmus, and then with aq. sodium hydrogen carbonate, and were dried and concentrated. The residue was chromatographed on alumina ($2.2 \times 5.0 \mathrm{~cm}$). However, the corresponding cyclic compound could not be obtained from any eluate.

Isomeric 1,6-Bis(5-oxohepta-1,3-dien-6-ynyl)cyclohepta-1,3, 5-trienes 28a and 28b. -(a) Oxidation of diol 19b. A mixture of the $(E, Z),(E, Z)$-diol $19 b(1.00 \mathrm{~g}, 3.28 \mathrm{mmol})$ and $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ $(20 \mathrm{~g})$ in dichloromethane ($200 \mathrm{~cm}^{3}$) was stirred for 5 h at room temperature before being worked up as for the isolation of compound 24. The product was chromatographed on silica gel $(3.2 \times 10.0 \mathrm{~cm})$. The initial fractions, eluted with 40% dichloromethane in benzene, afforded the (E,Z),(E,E)-isomer 28a ($75 \mathrm{mg}, 7.6 \%$) as dark red needles, m.p. $138-143^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); $m / z 300\left(\mathrm{M}^{+} 55 \%\right)$ and $53(100)\left(\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{2}\right.$ requires $\left.\mathrm{M}, 300.3\right) ; \lambda_{\text {max }} / \mathrm{nm} 244$ (19600), $290(15600), 349(63000)$ and $437(10400) ; v_{\text {max }} / \mathrm{cm}^{-1}$ 3250 and $3200(\mathrm{C} \equiv \mathrm{CH}), 2080$ and $2070(\mathrm{C} \equiv \mathrm{C}), 1630$ and 1620 $(\mathrm{C}=\mathrm{O}), 990[(E)-\mathrm{HC}=\mathrm{CH}]$ and 690 and $670[(Z)-\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}}$ $8.15\left(1 \mathrm{H}\right.$, dd, $J 15.5$ and $\left.11.9, \mathrm{H}^{\mathrm{C}^{\prime}}\right), 7.56(1 \mathrm{H}$, dd, $J 15.2$ and $\left.11.1, \mathrm{H}^{\mathrm{B}}\right), 7.18\left(1 \mathrm{H}, \mathrm{dd}, J 15.3\right.$ and $\left.11.0, \mathrm{H}^{\mathrm{C}}\right), 6.81(1 \mathrm{H}, \mathrm{d}, J$ $\left.15.3, \mathrm{H}^{\mathrm{D}}\right), 6.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right.$ and $\left.\mathrm{H}^{3}\right), 6.73(1 \mathrm{H}, \mathrm{d}, J 15.5$, $\left.\mathrm{H}^{\mathrm{D}^{\prime}}\right), 6.68\left(1 \mathrm{H}, \mathrm{d}, J 15.1, \mathrm{H}^{\mathrm{A}}\right), 6.67(1 \mathrm{H}, \mathrm{dd}, J 11.9$ and 10.8 , $\left.\mathrm{H}^{\mathrm{B}^{\prime}}\right), 6.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right.$ and $\left.\mathrm{H}^{4}\right), 6.21\left(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{H}^{\mathrm{A}^{\prime}}\right)$, $3.214(1 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH}), 3.210(1 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH})$ and $2.79(2 \mathrm{H}, \mathrm{s}$, CH_{2}) (Found: C, 83.8; $\mathrm{H}, 5.3 . \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 84.0 ; \mathrm{H}$, 5.4%).

The later fractions, eluted with benzene-dichloromethane ($1: 1$), afforded the (E,E),(E,E)-isomer 28b ($389 \mathrm{mg}, 40 \%$) as orange needles, m.p. $161-165^{\circ} \mathrm{C}$ (decomp.) (from hexanedichloromethane); $m / \mathrm{z} 300\left(\mathrm{M}^{+}, 63 \%\right)$ and $53(100)\left(\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{2}\right.$ requires $\mathrm{M}, 300.3$); $\lambda_{\text {max }} / \mathrm{nm} 240(17700)$, 284sh (17300), 341 (72100) and $432(15900) ; v_{\text {max }} / \mathrm{cm}^{-1} 3200(\mathrm{C} \equiv \mathrm{CH}), 2090(\mathrm{C} \equiv \mathrm{C})$, $1620(\mathrm{C}=\mathrm{O}), 990[(E)-\mathrm{HC}=\mathrm{CH}]$ and $690[(Z)-\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}} 7.57$ $\left(2 \mathrm{H}\right.$, dd, $J 15.3$ and $\left.10.9, \mathrm{H}^{\mathrm{B}}\right), 6.84\left(2 \mathrm{H}, \mathrm{d}, J 15.2, \mathrm{H}^{\mathrm{D}}\right), 6.74(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}^{2}\right), 6.71\left(2 \mathrm{H}, \mathrm{dd}, J 15.2\right.$ and $\left.11.0, \mathrm{H}^{\mathrm{C}}\right), 6.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right)$, $6.36\left(2 \mathrm{H}, \mathrm{d}, J 15.3, \mathrm{H}^{\mathrm{A}}\right), 3.26(2 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH})$ and $2.78(2 \mathrm{H}, \mathrm{s}$, CH_{2}) (Found: C, $83.7 ; \mathrm{H}, 5.5 \%$).
(b) Oxidation of Diol 19a. A mixture of the diol 19a (0.50 g) and $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}(10.0 \mathrm{~g})$ in dichloromethane $\left(250 \mathrm{~cm}^{3}\right)$ was stirred for 5.5 h at room temperature and then was worked up as for the isolation of compound 24 . The product was chromatographed on silica gel $(4.2 \times 6.0 \mathrm{~cm})$. The fractions
eluted with 30% dichloromethane in benzene afforded the $(E, Z),(E, E)$-diketone 28 a ($420 \mathrm{mg}, 85 \%$).

12,15-Dichloro-13,14-didehydro-1,6-methano[20]annulene11,16 -dione 4.-A solution of the diketone 28 a ($125 \mathrm{mg}, 0.416$ mmol) in ethanol-benzene ($3: 1 ; 50 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of copper(I) chloride (27.5 g), ammonium chloride (44 g), water ($122 \mathrm{~cm}^{3}$) and conc. $\mathrm{HCl}\left(0.3 \mathrm{~cm}^{3}\right)$ at $60-$ $65^{\circ} \mathrm{C}$. After the mixture had been stirred for 10 min , a further quantity of benzene-ethanol ($1: 1 ; 76 \mathrm{~cm}^{3}$) was added, and the mixture was stirred for a further 1.5 h at $60^{\circ} \mathrm{C}$ while being bubbled with oxygen. Then the mixture was worked up as for the isolation of compound 3 . The product was chromatographed on silica gel $(3.2 \times 10 \mathrm{~cm})$. The fractions eluted with 10% dichloromethane in benzene afforded the didehydro[20] annuledione 4 ($15 \mathrm{mg}, 9.8 \%$) as black-purple needles, m.p. $156-161^{\circ} \mathrm{C}$ (decomp.) (from hexane-THF); $m / z 370\left(\mathrm{M}^{+}+1\right.$, $42 \%), 368\left(\mathrm{M}^{+}-1,68\right)$ and $115(100)\left(\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}\right.$ requires M, 368.3); for UV data see Table 3, Figs. 6 and $7 ; v_{\text {max }} / \mathrm{cm}^{-1}$ $2040(-\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}-), 1655(\mathrm{C}=\mathrm{O})$ and 1010 and $990[(E)-$ $\mathrm{HC}=\mathrm{CH}]$; for ${ }^{1} \mathrm{H}$ NMR data see Table 1, Figs. 2, 3 and 5; for ${ }^{13} \mathrm{C}$ NMR data see Table 2 (Found: C, 68.6; H, 4.1. $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 68.5 ; \mathrm{H}, 3.8 \%$).

Attempted Eglinton coupling of the diketone 28a as for the diol 19a did not afford the corresponding [20] annulenedione 2 ($m=n=1$). Also, attempted Glaser coupling of the diketone 28b as for the diketone 28a did not afford the corresponding [20]annulenedione 4.

1-(5-Hydroxyhepta-1,3-dien-6-ynyl)-6-(7-hydroxynona-1,3,5-trien-8-ynyl) cyclohepta-1,3,5-triene 20.-To an ice-cooled solution of ethynylmagnesium bromide in THF ($620 \mathrm{~cm}^{3}$), prepared from gaseous acetylene, magnesium (8.70 g) and bromoethane (43.0 g), was added dropwise during 40 min a solution of the dialdehyde $11^{4}(700 \mathrm{mg}, 2.52 \mathrm{mmol})$ in THF ($200 \mathrm{~cm}^{3}$) and the mixture was stirred for 30 min at room temperature before being worked up as for the isolation of compound 16. The product was chromatographed on silica gel $(4.2 \times 5.0 \mathrm{~cm})$. The fractions eluted with benzene-dichloromethane (3:7) afforded the diol $20(532 \mathrm{mg}, 64 \%)$ as orange needles, m.p. $113-121^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); $m / z 330\left(\mathrm{M}^{+}, 39 \%\right)$ and $165(100)\left(\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{2}\right.$ requires $\mathrm{M}, 330.4$); $\lambda_{\text {max }} / \mathrm{nm} 253 \mathrm{sh}(13600), 294$ (76300), 305 (89 200) and $400(12500) ; v_{\text {max }} / \mathrm{cm}^{-1} 3300(\mathrm{OH}), 3250(\mathrm{C} \equiv \mathrm{CH})$, $2100(\mathrm{C} \equiv \mathrm{C})$ and $990[(E)-\mathrm{HC}=\mathrm{CH}]$. Although compound 20 is a $\sim 1: 1$ mixture of two diastereoisomers, the chemical-shift difference between the isomers is observed only in the methylene protons: $\delta_{\mathrm{H}} 6.66-6.33(10 \mathrm{H}, \mathrm{m}), 6.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right.$ and $\left.\mathrm{H}^{4}\right), 5.92\left(1 \mathrm{H}\right.$, dd, $J 14.4$ and $6.1, \mathrm{H}^{\mathrm{A}}$ or $\left.\mathrm{H}^{\mathrm{A}}\right), 5.87(1 \mathrm{H}$, dd, $J 15.1$ and $6.1, \mathrm{H}^{\mathrm{A}^{\prime}}$ or $\left.\mathrm{H}^{\mathrm{A}}\right), 4.99(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 4.97(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHOH}), 2.69$ and $2.66\left(\mathrm{AB}-\mathrm{q}, J 13.1, \mathrm{CH}_{2}\right.$ of one isomer), 2.67 (s, CH_{2} of other isomer), $2.63(1 \mathrm{H}, \mathrm{d}, J 2.2, \equiv \mathrm{CH}), 2.61(1 \mathrm{H}, \mathrm{d}$, $J 2.2, \equiv \mathrm{CH}), 1.93(1 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{OH})$ and $1.90(1 \mathrm{H}, \mathrm{d}, J 6.5$, $\mathrm{OH}) ; \delta_{\mathrm{C}} 136.0(\mathrm{t}), 135.2(\mathrm{t}), 135.1(\mathrm{t}), 132.8(\mathrm{t}), 132.5(\mathrm{t}), 131.84$ (t), 131.77 (q), 131.21 (t), 131.19 (q), $131.0(t), 130.7(t), 130.4$ (t), 128.7 (t), 128.5 (t), 128.3 (t), 127.1 (t), 82.66 ($\mathrm{q},-\mathrm{C} \equiv), 82.63$ $(\mathrm{q},-\mathrm{C} \equiv), 74.56(\mathrm{t}, \equiv \mathrm{CH}), 74.48(\mathrm{t}, \equiv \mathrm{CH}), 62.49(\mathrm{t}, \mathrm{CHOH}), 62.48$ $(\mathrm{t}, \mathrm{CHOH})$ and $27.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$ (Found: $\mathrm{C}, 83.3 ; \mathrm{H}, 6.8$. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 83.6 ; \mathrm{H}, 6.7 \%$).

1-(5-Oxohepta-1,3-dien-6-ynyl)-6-(7-oxonona-1,3,5-trien-8-ynyl)cyclohepta-1,3,5-triene 29.-A mixture of the diol 20 (400 $\mathrm{mg})$ and $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}(6.0 \mathrm{~g})$ in dichloromethane $\left(200 \mathrm{~cm}^{3}\right)$ was stirred for 2.5 h at room temperature before being worked up as for the isolation of compound 24 . The product was chromatographed on silica gel $(4.2 \times 4.0 \mathrm{~cm})$. The fractions eluted with 30% dichloromethane in benzene afforded the diketone 29 ($225 \mathrm{mg}, 57 \%$) as red needles, m.p. $128-132^{\circ} \mathrm{C}$
(decomp.) (from hexane-benzene); $m / z 326\left(\mathrm{M}^{+}, 58 \%\right)$ and 165 (100) ($\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{M}, 326.3$); $\lambda_{\text {max }} / \mathrm{nm} 250$ (12700), 300sh (18100), 360 (62900) and 445 (17700); $v_{\text {max }} / \mathrm{cm}^{-1} 3250$ $(\mathrm{C} \equiv \mathrm{CH}), 3200(\mathrm{C} \equiv \mathrm{CH}), 2090(\mathrm{C} \equiv \mathrm{C}), 1625(\mathrm{C}=\mathrm{O})$ and $1005[(E)-$ $\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}} 7.58\left(1 \mathrm{H}, \mathrm{dd}, J 15.3\right.$ and $\left.10.9, \mathrm{H}^{\mathrm{B}^{\prime}}\right), 7.54(1 \mathrm{H}, \mathrm{dd}, J$ 15.2 and $\left.11.3, \mathrm{H}^{\mathrm{B}}\right), 6.85\left(1 \mathrm{H}, \mathrm{d}, J 15.3, \mathrm{H}^{\mathrm{D}^{\prime}}\right), 6.82(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $\left.10.7, \mathrm{H}^{\mathrm{D}}\right)$, 6.75-6.67 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}, \mathrm{H}^{3}, \mathrm{H}^{\mathrm{C}^{\prime}}\right.$ and $\left.\mathrm{H}^{\mathrm{E}}\right), 6.61(1 \mathrm{H}$, d, $\left.J 15.1, \mathrm{H}^{\mathrm{F}}\right), 6.55\left(1 \mathrm{H}\right.$, dd, $J 14.5$ and $\left.11.3, \mathrm{H}^{\mathrm{C}}\right), 6.52(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J 5.6, \mathrm{H}^{1}$ or H^{4}), $6.46\left(1 \mathrm{H}\right.$, br d, $J 6.1, \mathrm{H}^{1}$ or $\left.\mathrm{H}^{4}\right), 6.37(1 \mathrm{H}, \mathrm{d}, J$ $\left.15.3, \mathrm{H}^{\mathrm{A}}\right), 6.33\left(1 \mathrm{H}, \mathrm{d}, J 15.3, \mathrm{H}^{\mathrm{A}}\right), 3.26(1 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH}), 3.25(1$ $\mathrm{H}, \mathrm{s}, \equiv \mathrm{CH}$) and $2.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ (Found: C, 84.6; H, 5.7. $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 84.6 ; \mathrm{H}, 5.6 \%$).

Attempted Hay Coupling of Diketone 29. ${ }^{14}$-A solution of the diketone $29(400 \mathrm{mg}, 1.23 \mathrm{mmol})$ in acetone ($30 \mathrm{~cm}^{3}$) was added dropwise during 4 h to a stirred solution of copper(I) chloride ($180 \mathrm{mg}, 1.85 \mathrm{mmol}$) and 1,4-diaminobutane ($0.28 \mathrm{~cm}^{3}, 1.85$ $\mathrm{mmol})$ in acetone $\left(150 \mathrm{~cm}^{3}\right)$ at $40^{\circ} \mathrm{C}$. The mixture was stirred for 3 h at $40^{\circ} \mathrm{C}$ while being bubbled with oxygen. The product was worked up as for the isolation of compound 3 except for the use of dichloromethane as the extraction solvent. The product was chromatographed on silica gel. However, no desired [22]annulenedione was detected.
Also, attempted Glaser coupling of the diketone 29 as for the preparation of compound 3 did not afford the corresponding [22]annulenedione.

1,6-Bis(7-hydroxynona-1,3,5-trien-8-ynyl)cyclohepta-1,3,5-

 triene 21.-To an ice-cooled solution of ethynylmagnesium bromide in THF ($600 \mathrm{~cm}^{3}$), prepared from gaseous acetylene, magnesium (15.0 g) and bromoethane (74.3 g), was added dropwise during 2 h a solution of the dialdehyde $12^{4}(1.00 \mathrm{~g}$, 3.28 mmol) in THF ($200 \mathrm{~cm}^{3}$) and the mixture was stirred for 30 min at room temperature before being worked up as for the isolation of compound 15 . The product was chromatographed on silica gel $(4.2 \times 6.0 \mathrm{~cm})$. The fractions eluted with dichloromethane afforded the diol $21(531 \mathrm{mg}, 45 \%)$ as orange needles, m.p. ${ }^{138-146}{ }^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); $m / z 356\left(\mathrm{M}^{+}, 100 \%\right)\left(\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{2}\right.$ requires $\left.\mathrm{M}, 356.4\right)$; $\lambda_{\text {max }} / \mathrm{nm}$ 294sh (50700), 306 (98400), 318 (110 200) and 418 (13000); $v_{\text {max }} / \mathrm{cm}^{-1} 3300(\mathrm{OH}), 3270(\mathrm{C} \equiv \mathrm{CH}), 2100(\mathrm{C} \equiv \mathrm{C})$ and $990[(E)-\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}} 6.63\left(2 \mathrm{H}, \mathrm{dd}, J 15.2\right.$ and $\left.9.7, \mathrm{H}^{\mathrm{E}}\right), 6.59(2$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right), 6.52\left(2 \mathrm{H}\right.$, ddd, $J 15.1,10.1$ and 1.1, $\left.\mathrm{H}^{\mathrm{B}}\right), 6.418(2 \mathrm{H}, \mathrm{d}$, $\left.J 15.3, \mathrm{H}^{\mathrm{F}}\right), 6.416\left(2 \mathrm{H}, \mathrm{dd}, J 14.8\right.$ and $\left.9.7, \mathrm{H}^{\mathrm{D}}\right), 6.36(2 \mathrm{H}, \mathrm{dd}, J$ 14.8 and $9.8, \mathrm{H}^{\mathrm{C}}$), $6.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right)$, $5.87(2 \mathrm{H}, \mathrm{dd}, J 15.0$ and 6.1, H^{A}), 4.97 ($2 \mathrm{H}, \mathrm{brt}, J 6.2, \mathrm{CHOH}$), $2.68\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 2.61$ $(2 \mathrm{H}, \mathrm{d}, J 2.2, \equiv \mathrm{CH})$ and $1.97(2 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{OH}) ; \delta_{\mathrm{C}} 135.3(\mathrm{t})$, 135.2 (t), 132.6 (t), 131.8 (t), 131.6 (q), 130.9 (t , 130.5 (t$), 128.6$ $(\mathrm{t}), 128.4(\mathrm{t}), 82.7(\mathrm{q},-\mathrm{C} \equiv), 74.5(\mathrm{t}, \equiv \mathrm{CH}), 62.5(\mathrm{t}, \mathrm{CHOH})$ and 27.3 (s, CH_{2}) (Found: C, 83.9; H, 6.85. $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{2}$ requires C, 84.2; H, 6.8\%).1,6-Bis(7-oxonona-1,3,5-trien-8-ynyl)cyclohepta-1,3,5-triene 30.-A mixture of the diol $21(0.30 \mathrm{~g})$ and $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}(5.0 \mathrm{~g})$ in dichloromethane-THF ($9: 1 ; 200 \mathrm{~cm}^{3}$) was stirred for 6 h at room temperature before being worked up as for the isolation of compound 24. The product was chromatographed on silica gel $(4.2 \times 5.0 \mathrm{~cm})$. The fractions eluted with 10% dichloromethane in benzene afforded the diketone $30(202 \mathrm{mg}, 68 \%)$ as purple needles, m.p. $138-142^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); $m / z 352\left(\mathrm{M}^{+}, 100 \%\right)\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{2}\right.$ requires $\left.\mathrm{M}, 352.4\right)$; $\lambda_{\text {max }} / \mathrm{nm} 250(30800), 373(94300)$ and 463 (21 600); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3170(\mathrm{C} \equiv \mathrm{CH}), 2080(\mathrm{C} \equiv \mathrm{C}), 1610(\mathrm{C}=\mathrm{O})$ and $1000[(E)-\mathrm{HC}=\mathrm{CH}]$; $\delta_{\mathrm{H}} 7.55\left(2 \mathrm{H}, \mathrm{dd}, J 15.3\right.$ and $\left.11.3, \mathrm{H}^{\mathrm{B}}\right), 6.83(2 \mathrm{H}, \mathrm{dd}, J 14.6$ and $\left.10.4, \mathrm{H}^{\mathrm{D}}\right), 6.69\left(2 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.9.6, \mathrm{H}^{\mathrm{E}}\right), 6.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right)$, $6.62\left(2 \mathrm{H}, \mathrm{d}, J 15.1, \mathrm{H}^{\mathrm{F}}\right), 6.54\left(2 \mathrm{H}, \mathrm{dd}, J 14.6\right.$ and $\left.11.3, \mathrm{H}^{\mathrm{C}}\right), 6.45$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right), 6.31\left(2 \mathrm{H}, \mathrm{d}, J 15.3, \mathrm{H}^{\mathrm{A}}\right), 3.25(2 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH})$ and 2.76 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$); $\delta_{\mathrm{C}} 177.0(\mathrm{q}, \mathrm{C}=\mathrm{O}), 148.6(\mathrm{q}), 143.7(\mathrm{t}), 139.7(\mathrm{t})$,
$131.6(t), 131.5(\mathrm{t}), 130.8(\mathrm{t}), 130.8(\mathrm{t}), 130.6(\mathrm{t}), 127.9(\mathrm{t}), 80.3(\mathrm{q}$, $-\mathrm{C} \equiv$), $78.8\left(\mathrm{t}, \equiv \mathrm{CH}\right.$) and $27.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$ (Found: $\mathrm{C}, 85.2 ; \mathrm{H}, 5.6$. $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 85.2 ; \mathrm{H}, 5.7 \%\right)$.

14,17-Dichloro-15,16-didehydro-1,6-methano[24]annulene-13,18-dione 5.-A solution of the diketone $30(283 \mathrm{mg}, 0.803$ mmol) in ethanol-benzene ($3: 1 ; 416 \mathrm{~cm}^{3}$) was added dropwise during 30 min to a stirred solution of copper (I) chloride (47 g), ammonium chloride (75 g), water ($208 \mathrm{~cm}^{3}$) and conc. $\mathrm{HCl}(0.85$ cm^{3}) at $60-65^{\circ} \mathrm{C}$. After the mixture had been stirred for 10 min , a further quantity of benzene-ethanol $\left(1: 1 ; 129 \mathrm{~cm}^{3}\right)$ was added and the mixture was stirred for a further 2 h at $60^{\circ} \mathrm{C}$ while being bubbled with oxygen. Then the mixture was worked up as for the isolation of compound 3 except for the use of dichloromethane as the extraction solvent. The product was chromatographed on silica gel ($4.2 \times 6 \mathrm{~cm}$). The fractions eluted with 30% dichloromethane in benzene afforded the didehydro[24]annulenedione $5(34 \mathrm{mg}, 10 \%)$ as dark green needles, m.p. $232-236^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); m / z $422\left(\mathrm{M}^{+}+1,0.6 \%\right), 420\left(\mathrm{M}^{+}-1,0.6 \%\right)$ and 84 (100) $\left(\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{2}\right.$ requires $\left.\mathrm{M}, 421.3\right)$; for UV data see Table 3, Figs. 6 and 7; $v_{\text {max }} / \mathrm{cm}^{-1} 2040(-\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}-), 1640(\mathrm{C}=\mathrm{O})$ and 1000 and $950[(E)-\mathrm{HC}=\mathrm{CH}]$; for ${ }^{1} \mathrm{H}$ NMR data see Table 1, Figs. 2-4; for ${ }^{13} \mathrm{C}$ NMR data see Table 2 (Found: C, 71.05 ; H, 4.4. $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 71.3 ; \mathrm{H}, 4.3 \%$).

1-(7-Hydroxynona-1,3,5-trien-8-ynyl)-6-(9-hydroxyundeca-1,3,5,7-tetraen-10-ynyl)cyclohepta-1,3,5-triene 22.-To an icecooled solution of ethynylmagnesium bromide in THF (600 cm^{3}), prepared from gaseous acetylene, magnesium (20.0 g) and bromoethane (98.3 g), was added dropwise during 2.5 h a solution of the dialdehyde $13^{4}(1.10 \mathrm{~g}, 3.33 \mathrm{mmol})$ in THF (350 cm^{3}) and the mixture was stirred for 30 min at room temperature before being worked up as for the isolation of compound 15. The product was chromatographed on silica gel $(4.2 \times 6.0 \mathrm{~cm})$. The fractions eluted with 5% ethyl acetate in dichloromethane afforded the diol $22(641 \mathrm{mg}, 50 \%)$ as orange microcrystals, m.p. $102-112^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); $m / z 382\left(\mathrm{M}^{+}, 61 \%\right)$ and $91(100)\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{2}\right.$ requires M, 382.4); $\lambda_{\text {max }} / \mathrm{nm} 310 \mathrm{sh}(50200)$, 322 (71000), 336 (78900) and 421 sh (14000); $\nu_{\text {max }} / \mathrm{cm}^{-1} 3350(\mathrm{OH}), 3270$ $(\mathrm{C} \equiv \mathrm{CH}), 2100(\mathrm{C} \equiv \mathrm{C})$ and $990[(E)-\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}} 6.70-6.30(16$ $\mathrm{H}, \mathrm{m}), 5.86\left(1 \mathrm{H}, \mathrm{dd}, J 15.1\right.$ and $6.2, \mathrm{H}^{\mathrm{A}}$ or $\left.\mathrm{H}^{\mathrm{A}^{\prime}}\right), 5.84(1 \mathrm{H}, \mathrm{dd}, J$ 15.1 and $6.2, \mathrm{H}^{\mathrm{A}^{\prime}}$ or $\left.\mathrm{H}^{\mathrm{A}}\right), 4.97(2 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.69(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 2.62(1 \mathrm{H}, \mathrm{d}, J 2.2, \equiv \mathrm{CH}), 2.61(1 \mathrm{H}, \mathrm{d}, J 2.2, \equiv \mathrm{CH}), 1.90$ $(1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{OH})$ and $1.89(1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{OH})$ (Found: C, 84.5; $\mathrm{H}, 6.8 . \mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 84.8 ; \mathrm{H}, 6.85 \%$).

1-(7-Oxonona-1,3,5-trien-8-ynyl)-6-(9-oxoundeca-1,3,5,7-tetraen-10-ynyl)cyclohepta-1,3,5-triene 31.-A mixture of the diol 22 ($200 \mathrm{mg}, 0.52 \mathrm{mmol}$) and $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}(10.0 \mathrm{~g})$ in dichloromethane ($400 \mathrm{~cm}^{3}$) was stirred for 6.5 h at room temperature before being worked up as for the isolation of compound 24. The product was chromatographed on silica gel $(4.2 \times 5.0 \mathrm{~cm})$. The fractions eluted with 20% dichloromethane in benzene afforded the diketone 31 ($97 \mathrm{mg}, 49 \%$) as dark red needles, m.p. $131-138^{\circ} \mathrm{C}$ (decomp.) (from hexane-dichloromethane); $m / z 379\left(\mathrm{M}^{+}+1\right)$ (FAB method) $\left(\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{2}\right.$ requires $\mathrm{M}, 378.4$); $\lambda_{\text {max }} / \mathrm{nm} 276$ (14400), 385 (86 200) and 468 (22700); $v_{\text {max }} / \mathrm{cm}^{-1} 3200(\mathrm{C} \equiv \mathrm{CH}), 2100(\mathrm{C} \equiv \mathrm{C}), 1620(\mathrm{C}=\mathrm{O})$ and $1010[(E)-\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}} 7.55\left(1 \mathrm{H}, \mathrm{dd}, J 15.2\right.$ and $11.3, \mathrm{H}^{\mathrm{B}}$ or $\left.\mathrm{H}^{\mathrm{B}^{\prime}}\right), 7.54\left(1 \mathrm{H}, \mathrm{dd}, J 15.2\right.$ and $11.3, \mathrm{H}^{\mathrm{B}^{\prime}}$ or $\left.\mathrm{H}^{\mathrm{B}}\right), 6.84(1 \mathrm{H}, \mathrm{dd}, J$ 14.7 and $10.3, \mathrm{H}^{\mathrm{D}}$ or $\left.\mathrm{H}^{\mathrm{D}^{\prime}}\right), 6.80\left(1 \mathrm{H}, \mathrm{dd}, J 14.6\right.$ and $11.1, \mathrm{H}^{\mathrm{D}^{\prime}}$ or $\left.\mathrm{H}^{\mathrm{D}}\right), 6.72-6.46(10 \mathrm{H}, \mathrm{m}), 6.44\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 5.7, \mathrm{H}^{1}\right.$ or $\left.\mathrm{H}^{4}\right), 6.41$ $\left(1 \mathrm{H}\right.$, brd, $J 5.9, \mathrm{H}^{4}$ or $\left.\mathrm{H}^{1}\right), 6.30\left(1 \mathrm{H}, \mathrm{d}, J 15.3, \mathrm{H}^{\mathrm{A}}\right.$ or $\left.\mathrm{H}^{\mathrm{A}}\right), 6.28$ $\left(1 \mathrm{H}, \mathrm{d}, J 15.3, \mathrm{H}^{\mathrm{A}^{\prime}}\right.$ or $\left.\mathrm{H}^{\mathrm{A}}\right), 3.25(1 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH}), 3.24(1 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH})$ and $2.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ (Found: C, 85.4; H, 6.05. $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 85.7 ; \mathrm{H}, 5.9 \%$).

Table 4 Experimental details of X-ray crystal analysis of compound 3

(a) Crystal data

Empirical formula
Relative formula mass
Crystal colour, Habit
Crystal dimensions (mm)
Crystal system
No. of reflections used for unit-cell
determination (2θ-range)
Omega scan peak-width at half-height
Lattice parameters:

Space group
Z-value
$D_{\text {calc }}$
F_{000}
$\mu(\mathrm{Mo}-\mathrm{K} \boldsymbol{\alpha})$
$\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$
317.17
brown, prismatic
$0.25 \times 0.25 \times 0.25$
orthorhombic
25(18-25 ${ }^{\circ}$)
0.43
$a=7.430(6) \AA$
$b=16.970(5) \AA$
$c=10.946(2) \AA$
$V=1380(2) \AA^{3}$
Pna2 ${ }_{1}$ (No. 33)
4
$1.526 \mathrm{~g} \mathrm{~cm}^{-3}$
648
$4.69 \mathrm{~cm}^{-1}$

(b) Intensity measurements

Diffractomer
Radiation
Temperature
Attenuators
Take-off angle
Detector aperture
Crystal-to-detector distance
Scan type
Scan rate
Scan width
$2 \theta_{\text {max }}$
No. of reflections measured
Correction

Rigaku AFC-5R
$\operatorname{Mo}-\mathrm{K} \alpha(\lambda=0.71069 \AA)$
$23^{\circ} \mathrm{C}$
Ni foil (factors: 3.6, 12.7, 45.1)
6.0°
$6.0 \mathrm{~mm} \times 6.0 \mathrm{~mm}$
25.8 cm
$2 \theta-\omega$
$8.0^{\circ} / \mathrm{min}$ (in omega) (2 rescans)
$(1.31+0.30 \tan \theta)^{\circ}$
55.1°
Total 1868
Lorentz-polarization effect
Absorption (trans. factors: 0.80-1.09)
(c) Structure solution and refinement

Structure solution
Refinement
Function minimized
Least-squares weights
p-factor
Anomalous dispersion
No. of observations $\left[F_{\mathrm{o}}>3.0 \sigma\left(F_{\mathrm{o}}\right)\right]$
No. of variables
Reflection/Parameter ratio
Residuals: $\mathbf{R} ; \mathbf{R}_{\omega}$
Goodness-of-fit indicator (GOF)
Max. shift/error in final diff. map
Maximum peak in final diff. map
Minimum peak in final diff. map

Patterson method Full-matrix least-squares
$\Sigma \omega\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$
$4 F_{0}^{2} / \sigma^{2}\left(F_{0}{ }^{2}\right)$
0.01

All non-hydrogen
1044
189
5.52
0.034; 0.026
1.54
0.20
$0.20 \mathrm{e}^{-3} \AA^{-3}$
$-0.20 \mathrm{e}^{\AA^{-3}}$

Attempted Glaser coupling of the diketone 31 as for the preparation of compound 3 did not afford the corresponding [26]annulenedione.

1,6-Bis(9-hydroxyundeca-1,3,5,7-tetraen-10-ynyl)cyclohepta-1,3,5-triene 23.-To an ice-cooled solution of ethynylmagnesium bromide in THF ($600 \mathrm{~cm}^{3}$), prepared from gaseous acetylene, magnesium (13.9 g) and bromoethane (68.3 g), was added dropwise during 1 h a solution of the dialdehyde 14^{4} $(1.50 \mathrm{~g}, 4.2 \mathrm{mmol})$ in THF ($100 \mathrm{~cm}^{3}$) and the mixture was stirred for 1 h at room temperature before being worked up as for the isolation of compound 15 . The product was chromatographed on silica gel ($4.2 \times 4.0 \mathrm{~cm}$). The fractions eluted with $90-100 \%$ dichloromethane in benzene afforded the diol $\mathbf{2 3}(625 \mathrm{mg}, \mathbf{3 6 \%}$) as brown needles, m.p. $162-168^{\circ} \mathrm{C}$ (decomp.) (from hexanedichloromethane); $m / z 408\left(\mathrm{M}^{+}, 67 \%\right)$ and $78(100)\left(\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}_{2}\right.$ requires M, 408.5); $\lambda_{\max } / \mathrm{nm} 247$ (7100), 318sh (53000), 331 (93 800), 346 (100900) and $438(13400)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3300(\mathrm{OH})$, $3250(\mathrm{C} \equiv \mathrm{CH}), 2100(\mathrm{C} \equiv \mathrm{C})$ and $980[(E)-\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}} 6.63(2 \mathrm{H}$, $\mathrm{m}), 6.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right), 6.51\left(2 \mathrm{H}, \mathrm{dd}, J 14.9\right.$ and $\left.10.4, \mathrm{H}^{\mathrm{B}}\right), 6.43-$ $6.31(12 \mathrm{H}, \mathrm{m}), 5.84\left(2 \mathrm{H}, \mathrm{dd}, J 15.2\right.$ and $\left.6.0, \mathrm{H}^{\mathrm{A}}\right), 4.97(2 \mathrm{H}, \mathrm{brt}, J$
$5.5, \mathrm{CHOH}), 2.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 2.61(2 \mathrm{H}, \mathrm{d}, J 2.1, \equiv \mathrm{CH})$ and 1.90 (2 H , dd, $J 6.4$ and 0.9, OH) (Found: C, 85.1; H, 6.8. $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 85.3 ; \mathrm{H}, 6.9 \%$).

1,6-Bis(9-oxoundeca-1,3,5,7-tetraen-10-ynyl)cyclohepta-1,3,

 5-triene 32.-A mixture of the diol $23(600 \mathrm{mg}, 1.47 \mathrm{mmol})$ and $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}(5.0 \mathrm{~g})$ in dichloromethane ($200 \mathrm{~cm}^{3}$) was stirred for 5 h at room temperature before being worked up as for the isolation of compound 24 . The product was chromatographed on silica gel $(2.8 \times 5.0 \mathrm{~cm})$. The fractions eluted with dichloromethane afforded the diketone 32 ($308 \mathrm{mg}, 52 \%$) as dark purple needles, m.p. $75-77^{\circ} \mathrm{C}$ (decomp.) (from hexanedichloromethane); $m / z 405\left(\mathrm{M}^{+}+1\right)$ (FAB method) ($\mathrm{C}_{29}{ }^{-}$ $\mathrm{H}_{24} \mathrm{O}_{2}$ requires $\mathrm{M}, 404.4$); $\lambda_{\text {max }} / \mathrm{nm} 278$ (14 100), 396 (65 200) and 480sh (17600); $v_{\text {max }} / \mathrm{cm}^{-1} 3200(\mathrm{C} \equiv \mathrm{CH}), 2090(\mathrm{C} \equiv \mathrm{C}), 1620$ $(\mathrm{C}=\mathrm{O})$ and $1000[(E)-\mathrm{HC}=\mathrm{CH}] ; \delta_{\mathrm{H}} 7.54(2 \mathrm{H}, \mathrm{dd}, J 15.3$ and $\left.11.4, \mathrm{H}^{\mathrm{B}}\right), 6.80\left(2 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.11.3, \mathrm{H}^{\mathrm{D}}\right), 6.68(2 \mathrm{H}, \mathrm{dd}, J 14.8$ and $\left.10.7, \mathrm{H}^{\mathrm{G}}\right), 6.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right), 6.61(2 \mathrm{H}, \mathrm{dd}, J 14.4$ and 10.7 , $\left.\mathrm{H}^{\mathrm{F}}\right), 6.54\left(2 \mathrm{H}, \mathrm{d}, J 14.9, \mathrm{H}^{\mathrm{H}}\right), 6.48\left(4 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $11.3, \mathrm{H}^{\mathrm{C}}$ and $\left.\mathrm{H}^{\mathrm{E}}\right), 6.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right), 6.27\left(2 \mathrm{H}, \mathrm{d}, J 15.2, \mathrm{H}^{\mathrm{A}}\right), 3.24(2 \mathrm{H}, \mathrm{s}$, $\equiv \mathrm{CH})$ and $2.74\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ (Found: $\mathrm{C}, 86.3 ; \mathrm{H}, 6.0 . \mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $\mathrm{C}, 86.1 ; \mathrm{H}, 6.0 \%$).Attempted Glaser coupling of the diketone 32 under the conditions reported for the preparation of compound 3 did not afford the corresponding [28]annulenedione, but the diketone 32 was recovered unchanged.
X-Ray Structure Determination for Compound 3.-An orange prismatic crystal of compound $\mathbf{3}$ grown from dichloromethane was mounted in a Lindemann capillary tube under N_{2}. All measurements were made on a Rigaku AFC-5R fourcircle diffractometer with graphite-monochromated Mo-K α radiation

The cell constants and orientation matrix were obtained from least-squares refinement of the setting angles for 25 carefully centred reflections ($2 \theta=18.1-24.8^{\circ}$). Intensity data were collected by the $2 \theta-\omega$ scan technique. Systematic absences ($0 k$ $l) ; h+l \neq 2 n$, ($h 0 l$); $h \neq 2 n$ for total data set and the successful solution and refinement of the structure indicated that space group was $P n a 2_{1}$ (No. 33). The intensities of three standard reflections monitored after every 150 reflections showed 2.5% reduction during data collection. The data were corrected for the decay, Lorentz and polarization effects and absorption using the program DIFABS. ${ }^{23}$ Full details of the crystal data and intensity measurements are compiled in Table 4.

The phase derived from the Cl atoms was located in Patterson maps. All remaining non-hydrogen atoms were found by the successive difference Fourier syntheses and least-squares refinements. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included at calculated positions, but their parameters were not refined. The final cycle of full-matrix least-squares refinements converged with unweighted and weighted agreement factors of $R=\Sigma\left|F_{0}\right|-$ $\left|F_{\mathrm{c}}\right||/ \Sigma| F_{\mathrm{o}} \mid=0.034$ and $R_{\omega}=\left[\Sigma \omega\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma \omega F_{\mathrm{o}}^{2}\right]^{1 / 2}=$ 0.026 for 1044 observed reflections [$I>3.0 \sigma(I)$] and 189 variable parameters. The details of structure solution and refinement are shown in Table 4.*

Neutral atom-scattering factors were taken from Cromer and Waber. ${ }^{24}$ Anomalous dispersion effects were included in $F_{\text {calc }}$; the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Cromer and Waber. ${ }^{25}$ All calculations were performed on a VAX station 3100 using the TEXSAN ${ }^{26}$ crystallographic software package.

[^5]
Acknowledgements

Financial support by a Grand-in-Aid (No. 05453029) for Scientific Research from the Ministry of Education, Science and Culture, Japan, and by grants from the Nishida Research Fund for Fundamental Organic Chemistry and from the Foundation for the Promotion of Higher Education in Toyama Prefecture, is gratefully acknowleged.

References

1 A. T. Balaban, M. Banciu and V. Ciorba, Annulenes, Benzo-, Hetero-, Homo-Derivatives, and Their Valence Isomers, CRC Press, Florida, 1987, vol. 3, p. 106.
2 H. Higuchi, K. Asano, K. Nakafuku, Y. Takai, J. Ojima and G. Yamamoto, J. Chem. Soc., Perkin Trans. 1, 1993, 89.

3 J. Ojima, E. Ejiri, T. Kato, M. Nakamura, S. Kuroda, S. Hirooka and M. Shibutani, J. Chem. Soc., Perkin Trans. 1, 1987, 831.
4 J. Ojima, S. Fujita, M. Masumoto, E. Ejiri, T. Kato, S. Kuroda, Y. Nozawa, S. Hirooka, Y. Yoneyama and H. Tatemitsu, J. Chem. Soc., Perkin Trans. 1, 1988, 385.
5 J. Ojima, T. Hashimoto, J. Katsuyama, H. Miyashita, S. Fijita, S. Kuroda, Y. Kano and G. Yamamoto, J. Chem. Soc., Perkin Trans. 1, 1990, 333.
6 Part of this work has appeared in preliminary form: G. Yamamoto, H. Higuchi, K. Asano and J. Ojima, J. Chem. Soc., Chem. Commun., 1993, 698; Chem. Lett., 1993, 1829.
7 E. Vogel, R. Feldmann and H. Düwel, Tetrahedron Lett., 1970, 1941.
8 E. R. H. Jones, L. Skatteböl and M. C. Whiting, J. Chem. Soc., 1956, 4765; L. Skatteböl, E. R. H. Jones and M. C. Whiting, Org. Synth., Coll. Vol. 4, 1963, p. 792.
9 H. Firouzabadi and E. Ghaderi, Tetrahedron Lett., 1978, 829.
10 G. Eglinton and A. R. Galbraith, Chem. Ind. (London), 1956, 737; J. Chem. Soc., 1959, 889.

11 G. Eglinton and W. McCrae, Adv. Org. Chem., 1963, 4, 225; N. Darby, T. M. Cresp and F. Sondheimer, J. Org. Chem., 1977, 42, 1960.

12 P. D. Howes, E. LeGoff and F. Sondheimer, Tetrahedron Lett., 1972, 3695.

13 J. Ojima, H. Kakumi, K. Kitatani, K. Wada, E. Ejiri and T. Nakada, Can. J. Chem., 1985, 63, 2885.
14 A. S. Hay, J. Org. Chem., 1962, 27, 3320; K. Nakasuji, S. Akiyama, K. Akashi and M. Nakagawa, Bull. Chem. Soc. Jpn., 1970, 43, 3567.

15 M. J. S. Dewar and G. J. Gleicher, J. Am. Chem. Soc., 1965, 87, 685.
16 J. Ojima, K. Wada and M. Terasaki, J. Chem. Soc., Perkin Trans. 1, 1982, 51 and references cited therein.
17 M. Nakagawa, Pure Appl. Chem., 1975, 44, 885.
18 H. Higuchi, H. Yamamoto, J. Ojima, M. Iyoda, M. Yoshida and G. Yamamoto, J. Chem. Soc., Perkin Trans. 1, 1993, 983.

19 R. C. Haddon, J. Am. Chem. Soc., 1979, 101, 1722.
20 W. Runge, Prog. Phys. Org. Chem., 1981, 13, 315; R. W. Kunz, V. Bilinsky, W. von Philipsborn and A. S. Dreiding, Org. Magn. Reson., 1984, 22, 349.
21 See, for example: H. Gunther and H. Schmickler, Pure Appl. Chem., 1975, 44, 807; B. M. Trost and W. B. Herdle, J. Am. Chem. Soc., 1976, 98, 4080; R. B. Mallion, Pure Appl. Chem., 1980, 52, 1541.
22 D. A. Klein and G. Binsch, QCPE Program No. 165.
23 N. Walker and D. Stuart, Acta. Crystallogr., Sect. A, 1983, 39, 158.
24 D. T. Cromer and J. T. Waber, International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, Table 2.2A.

25 D. T. Cromer and J. T. Waber, International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, Table 2.3.1.

26 TEXSAN-TEXRAY Structure Analysis Package, Molecular Structure Corporation, 1985.

Paper 3/07653I
Received 31st December 1993
Accepted 4th February 1994

[^0]: \dagger Among the unsymmetrical diketones 25, 27, 29 and 31 studied only the diketone $\mathbf{2 5}$ gave supposed cyclization products, although the yields were quite low. Further studies on the structural determination of the products are in progress.

[^1]: * Among the unsymmetrical diketones 25, 27, 29 and 31 studied only the diketone $\mathbf{2 5}$ gave supposed cyclization products, although the yields were quite low. Further studies on the structureal determination of the products are in progress.

[^2]: * $1 \mathrm{cal}=4.184 \mathrm{~J}$.

[^3]: * The calculated spectra were obtained by the DNMR3 program. ${ }^{22}$

[^4]: \dagger Among the unsymmetrical diketones 25, 27, 29 and 31 studied only the diketone $\mathbf{2 5}$ gave supposed cyclization products, although the yields were quite low. Further studies on the structural determination of the products are in progress.

[^5]: * Supplementary publication (see Instructions for Authors, Issue 1). Lists of atomic coordinates, bond lengths, bond angles and dihedral angles have been deposited at the Cambridge Crystallographic Data Centre.

